Kolodziej Angela, Smalla Karl-Heinz, Richter Sandra, Engler Alexander, Pielot Rainer, Dieterich Daniela C, Tischmeyer Wolfgang, Naumann Michael, Kähne Thilo
Leibniz Institute for Neurobiology (LIN).
Institute of Experimental Internal Medicine, Medical School, Otto von Guericke University Magdeburg.
J Vis Exp. 2016 Dec 15(118):54992. doi: 10.3791/54992.
The molecular synaptic mechanisms underlying auditory learning and memory remain largely unknown. Here, the workflow of a proteomic study on auditory discrimination learning in mice is described. In this learning paradigm, mice are trained in a shuttle box Go/NoGo-task to discriminate between rising and falling frequency-modulated tones in order to avoid a mild electric foot-shock. The protocol involves the enrichment of synaptosomes from four brain areas, namely the auditory cortex, frontal cortex, hippocampus, and striatum, at different stages of training. Synaptic protein expression patterns obtained from trained mice are compared to naïve controls using a proteomic approach. To achieve sufficient analytical depth, samples are fractionated in three different ways prior to mass spectrometry, namely 1D SDS-PAGE/in-gel digestion, in-solution digestion and phospho-peptide enrichment. High-resolution proteomic analysis on a mass spectrometer and label-free quantification are used to examine synaptic protein profiles in phospho-peptide-depleted and phospho-peptide-enriched fractions of synaptosomal protein samples. A commercial software package is utilized to reveal proteins and phospho-peptides with significantly regulated relative synaptic abundance levels (trained/naïve controls). Common and differential regulation modes for the synaptic proteome in the investigated brain regions of mice after training were observed. Subsequently, meta-analyses utilizing several databases are employed to identify underlying cellular functions and biological pathways.
听觉学习和记忆背后的分子突触机制在很大程度上仍然未知。在此,描述了一项关于小鼠听觉辨别学习的蛋白质组学研究的工作流程。在这种学习范式中,小鼠在穿梭箱的Go/NoGo任务中接受训练,以区分上升和下降的调频音调,从而避免轻微的足部电击。该方案包括在训练的不同阶段从四个脑区,即听觉皮层、额叶皮层、海马体和纹状体中富集突触体。使用蛋白质组学方法将训练小鼠获得的突触蛋白表达模式与未训练的对照进行比较。为了达到足够的分析深度,在质谱分析之前,样品以三种不同方式进行分级分离,即一维SDS-PAGE/胶内消化、溶液内消化和磷酸肽富集。使用质谱仪进行高分辨率蛋白质组分析和无标记定量,以检查突触体蛋白样品的磷酸肽耗尽和磷酸肽富集部分中的突触蛋白谱。利用一个商业软件包来揭示相对突触丰度水平(训练组/未训练对照组)受到显著调节的蛋白质和磷酸肽。观察到训练后小鼠被研究脑区中突触蛋白质组的共同和差异调节模式。随后,利用几个数据库进行荟萃分析,以确定潜在的细胞功能和生物学途径。