Key Lab of Artificial Micro- and Nano-Structures of Ministry of Education of China, School of Physics and Technology, Wuhan University, Wuhan, 430072, P. R. China.
Department of Physics and Astronomy and Wright Center for Photovoltaics Innovation and Commercialization, The University of Toledo, Toledo, OH, 43606, USA.
Small. 2017 Jan;13(2). doi: 10.1002/smll.201601769. Epub 2016 Nov 7.
Despite the rapid increase of efficiency, perovskite solar cells (PSCs) still face some challenges, one of which is the current-voltage hysteresis. Herein, it is reported that yttrium-doped tin dioxide (Y-SnO ) electron selective layer (ESL) synthesized by an in situ hydrothermal growth process at 95 °C can significantly reduce the hysteresis and improve the performance of PSCs. Comparison studies reveal two main effects of Y doping of SnO ESLs: (1) it promotes the formation of well-aligned and more homogeneous distribution of SnO nanosheet arrays (NSAs), which allows better perovskite infiltration, better contacts of perovskite with SnO nanosheets, and improves electron transfer from perovskite to ESL; (2) it enlarges the band gap and upshifts the band energy levels, resulting in better energy level alignment with perovskite and reduced charge recombination at NSA/perovskite interfaces. As a result, PSCs using Y-SnO NSA ESLs exhibit much less hysteresis and better performance compared with the cells using pristine SnO NSA ESLs. The champion cell using Y-SnO NSA ESL achieves a photovoltaic conversion efficiency of 17.29% (16.97%) when measured under reverse (forward) voltage scanning and a steady-state efficiency of 16.25%. The results suggest that low-temperature hydrothermal-synthesized Y-SnO NSA is a promising ESL for fabricating efficient and hysteresis-less PSC.
尽管效率快速提高,但钙钛矿太阳能电池(PSC)仍面临一些挑战,其中之一是电流-电压滞后。本文报道了通过 95°C 原位水热生长工艺合成的掺钇氧化锡(Y-SnO)电子选择性层(ESL)可以显著降低滞后并提高 PSC 的性能。比较研究揭示了 SnO ESL 中 Y 掺杂的两个主要作用:(1)促进 SnO 纳米片阵列(NSA)的良好排列和更均匀的分布,从而使钙钛矿更好地渗透,钙钛矿与 SnO 纳米片更好地接触,并改善电子从钙钛矿到 ESL 的转移;(2)增大带隙并向上移动能带能级,从而与钙钛矿更好地能级对齐,并减少 NSA/钙钛矿界面处的电荷复合。结果,与使用原始 SnO NSA ESL 的电池相比,使用 Y-SnO NSA ESL 的 PSC 表现出更小的滞后和更好的性能。使用 Y-SnO NSA ESL 的最佳电池在反向(正向)电压扫描下测量时的光电转换效率为 17.29%(16.97%),稳态效率为 16.25%。结果表明,低温水热合成的 Y-SnO NSA 是制备高效、无滞后 PSC 的有前途的 ESL。