NASA Glenn Research Center , 21000 Brookpark Road, Cleveland, Ohio 44135, United States.
Ohio Aerospace Institute , 22800 Cedar Point Road, Cleveland, Ohio 44142, United States.
ACS Appl Mater Interfaces. 2017 Jan 18;9(2):1801-1809. doi: 10.1021/acsami.6b13100. Epub 2017 Jan 6.
We report here the fabrication of polyamide aerogels composed of poly-p-phenylene-terephthalamide, the same backbone chemistry as DuPont's Kevlar. The all-para-substituted polymers gel without the use of cross-linker and maintain their shape during processing-an improvement over the meta-substituted cross-linked polyamide aerogels reported previously. Solutions containing calcium chloride (CaCl) and para-phenylenediamine (pPDA) in N-methylpyrrolidinone (NMP) at low temperature are reacted with terephthaloyl chloride (TPC). Polymerization proceeds over the course of 5 min resulting in gelation. Removal of the reaction solvent via solvent exchange followed by extraction with supercritical carbon dioxide provides aerogels with densities ranging from 0.1 to 0.3 g/cm, depending on the concentration of calcium chloride, the formulated number of repeat units, n, and the concentration of polymer in the reaction mixture. These variables were assessed in a statistical experimental study to understand their effects on the properties of the aerogels. Aerogels made using at least 30 wt % CaCl had the best strength when compared to aerogels of similar density. Furthermore, aerogels made using 30 wt % CaCl exhibited the lowest shrinkage when aged at elevated temperatures. Notably, whereas most aerogel materials are highly insulating (thermal conductivities of 10-30 mW/m K), the polyamide aerogels produced here exhibit remarkably high thermal conductivities (50-80 mW/(m K)) at the same densities as other inorganic and polymer aerogels. These high thermal conductivities are attributed to efficient phonon transport by the rigid-rod polymer backbone. In conjunction with their low cost, ease of fabrication with respect to other polymer aerogels, low densities, and high mass-normalized strength and stiffness properties, these aerogels are uniquely valuable for applications such as lightweighting in consumer electronics, automobiles, and aerospace where weight reduction is desirable but trapping of heat may be undesirable-applications where other polymer aerogels have to date otherwise been unsuitable-creating new opportunities for commercialization of aerogels.
我们在这里报告了由聚对苯二甲酰对苯二胺组成的聚酰胺气凝胶的制造,其化学结构与杜邦的凯夫拉相同。全对位取代的聚合物在没有使用交联剂的情况下凝胶化,并在加工过程中保持其形状-这比以前报道的间位取代的交联聚酰胺气凝胶有所改进。在低温下,将含有氯化钙(CaCl)和对苯二胺(pPDA)的 N-甲基吡咯烷酮(NMP)溶液与对苯二甲酰氯(TPC)反应。聚合过程在 5 分钟内进行,导致凝胶化。通过溶剂交换除去反应溶剂,然后用超临界二氧化碳萃取,提供密度在 0.1 至 0.3 g/cm 之间的气凝胶,具体取决于氯化钙的浓度、配方的重复单元数 n 和反应混合物中聚合物的浓度。这些变量在统计实验研究中进行了评估,以了解它们对气凝胶性能的影响。与具有相似密度的气凝胶相比,当使用至少 30wt%的 CaCl 时,气凝胶具有最佳的强度。此外,在高温下老化时,使用 30wt%的 CaCl 的气凝胶收缩最小。值得注意的是,虽然大多数气凝胶材料具有很高的隔热性(热导率为 10-30 mW/m K),但这里生产的聚酰胺气凝胶在相同密度下表现出非常高的热导率(50-80 mW/(m K)),与其他无机和聚合物气凝胶相当。这些高热导率归因于刚性棒状聚合物主链的有效声子输运。结合其低成本、相对于其他聚合物气凝胶易于制造、低密度以及高质量归一化强度和刚度特性,这些气凝胶在需要减轻重量但不希望热量被困的应用中具有独特的价值,例如消费电子产品、汽车和航空航天中的轻量化-迄今为止,其他聚合物气凝胶在这些应用中不适用-为气凝胶的商业化创造了新的机会。