Laboratory for Building Energy Materials and Components, Swiss Federal Laboratories for Materials Science and Technology, Empa, Überlandstrasse 129, CH-8600 Dübendorf, Switzerland.
Department of Chemistry, University of Fribourg, Chemin du Musée 9, CH-1700 Fribourg, Switzerland.
ACS Appl Mater Interfaces. 2020 May 13;12(19):22037-22049. doi: 10.1021/acsami.0c03047. Epub 2020 Apr 30.
Biopolymer aerogels are an emerging class of materials with potential applications in drug delivery, thermal insulation, separation, and filtration. Chitosan is of particular interest as a sustainable, biocompatible, and abundant raw material. Here, we present urea-modified chitosan aerogels with a high surface area and excellent thermal and mechanical properties. The irreversible gelation of an acidic chitosan solution is triggered by the thermal decomposition of urea at 80 °C through an increase in pH and, more importantly, the formation of abundant ureido terminal groups. The hydrogels are dried using either supercritical CO drying (SCD) or ambient pressure drying (APD) methods to elucidate the influence of the drying process on the final aerogel properties. The hydrogels are exchanged into ethanol prior to SCD, and into ethanol and then heptane prior to APD. The surface chemistry and microstructure are monitored by solid-state NMR and Fourier transform infrared spectroscopy, scanning electron microscopy, and nitrogen sorption. Surprisingly, large monolithic aerogel plates (70 × 70 mm) can be produced by APD, albeit at a somewhat higher density (0.17-0.42 g/cm). The as prepared aerogels have thermal conductivities of ∼24 and ∼31 mW/(m·K) and surface areas of 160-170 and 85-230 m/g, for SCD and APD, respectively. For a primarily biopolymer-based material, these aerogels are exceptionally stable at elevated temperature (TGA) and char and self-extinguish after direct flame exposure. The urea-modified chitosan aerogels display superior mechanical properties compared to traditional silica aerogels, with no brittle rupture up to at least 80% strain, and depending on the chitosan concentration, relatively high -moduli (1.0-11.6 MPa), and stress at 80% strain values (σ of 3.5-17.9 MPa). Remarkably, the aerogel monoliths can be shaped and machined with standard tools, for example, drilling and sawing. This first demonstration to produce monolithic and machinable, mesoporous aerogels from bio-sourced, renewable, and nontoxic precursors, combined with the potential for reduced production cost by means of simple APD, opens up new opportunities for biopolymer aerogel applications and marks an important step toward commercialization of biopolymer aerogels.
生物聚合物气凝胶是一类具有应用潜力的新兴材料,可应用于药物输送、隔热、分离和过滤等领域。壳聚糖作为一种可持续、生物相容且丰富的原料,具有特别的应用前景。在这里,我们介绍了具有高比表面积和优异热学及力学性能的尿素改性壳聚糖气凝胶。在 80°C 下,尿素的热分解会引发酸性壳聚糖溶液的不可逆凝胶化,这是通过 pH 值的增加以及更重要的是丰富的酰氨基末端基团的形成来实现的。通过超临界 CO2 干燥(SCD)或常压干燥(APD)方法对水凝胶进行干燥,以阐明干燥过程对最终气凝胶性能的影响。在 SCD 之前,将水凝胶交换到乙醇中,在 APD 之前,将水凝胶先交换到乙醇中,然后再交换到庚烷中。通过固态 NMR 和傅里叶变换红外光谱、扫描电子显微镜和氮气吸附对表面化学和微观结构进行监测。令人惊讶的是,尽管密度稍高(0.17-0.42 g/cm³),但 APD 仍可以制备出大尺寸的整体式气凝胶板(70×70 mm)。所制备的气凝胶的热导率分别约为 24 和 31 mW/(m·K),比表面积分别为 160-170 和 85-230 m²/g,适用于 SCD 和 APD。对于主要基于生物聚合物的材料,这些气凝胶在高温(TGA)下表现出异常的稳定性,并且在直接火焰暴露后会碳化并自熄灭。与传统的二氧化硅气凝胶相比,尿素改性壳聚糖气凝胶具有更好的力学性能,在至少 80%的应变下不会发生脆性断裂,并且根据壳聚糖浓度的不同,具有相对较高的模量(1.0-11.6 MPa)和 80%应变时的应力值(σ为 3.5-17.9 MPa)。值得注意的是,气凝胶可以用标准工具(例如钻孔和锯切)进行成型和加工。这是首次利用生物来源、可再生且无毒的前体制备出整体式和可加工的中孔气凝胶的演示,再加上通过简单的 APD 降低生产成本的潜力,为生物聚合物气凝胶的应用开辟了新的机会,并朝着生物聚合物气凝胶的商业化迈出了重要的一步。