Suppr超能文献

基于主体的线粒体建模将亚细胞动力学与细胞稳态和异质性联系起来。

Agent-Based Modeling of Mitochondria Links Sub-Cellular Dynamics to Cellular Homeostasis and Heterogeneity.

作者信息

Dalmasso Giovanni, Marin Zapata Paula Andrea, Brady Nathan Ryan, Hamacher-Brady Anne

机构信息

Lysosomal Systems Biology, German Cancer Research Center (DKFZ) and BioQuant, University of Heidelberg, Heidelberg, Germany.

Systems Biology of Cell Death Mechanisms, German Cancer Research Center (DKFZ) and BioQuant, University of Heidelberg, Heidelberg, Germany.

出版信息

PLoS One. 2017 Jan 6;12(1):e0168198. doi: 10.1371/journal.pone.0168198. eCollection 2017.

Abstract

Mitochondria are semi-autonomous organelles that supply energy for cellular biochemistry through oxidative phosphorylation. Within a cell, hundreds of mobile mitochondria undergo fusion and fission events to form a dynamic network. These morphological and mobility dynamics are essential for maintaining mitochondrial functional homeostasis, and alterations both impact and reflect cellular stress states. Mitochondrial homeostasis is further dependent on production (biogenesis) and the removal of damaged mitochondria by selective autophagy (mitophagy). While mitochondrial function, dynamics, biogenesis and mitophagy are highly-integrated processes, it is not fully understood how systemic control in the cell is established to maintain homeostasis, or respond to bioenergetic demands. Here we used agent-based modeling (ABM) to integrate molecular and imaging knowledge sets, and simulate population dynamics of mitochondria and their response to environmental energy demand. Using high-dimensional parameter searches we integrated experimentally-measured rates of mitochondrial biogenesis and mitophagy, and using sensitivity analysis we identified parameter influences on population homeostasis. By studying the dynamics of cellular subpopulations with distinct mitochondrial masses, our approach uncovered system properties of mitochondrial populations: (1) mitochondrial fusion and fission activities rapidly establish mitochondrial sub-population homeostasis, and total cellular levels of mitochondria alter fusion and fission activities and subpopulation distributions; (2) restricting the directionality of mitochondrial mobility does not alter morphology subpopulation distributions, but increases network transmission dynamics; and (3) maintaining mitochondrial mass homeostasis and responding to bioenergetic stress requires the integration of mitochondrial dynamics with the cellular bioenergetic state. Finally, (4) our model suggests sources of, and stress conditions amplifying, cell-to-cell variability of mitochondrial morphology and energetic stress states. Overall, our modeling approach integrates biochemical and imaging knowledge, and presents a novel open-modeling approach to investigate how spatial and temporal mitochondrial dynamics contribute to functional homeostasis, and how subcellular organelle heterogeneity contributes to the emergence of cell heterogeneity.

摘要

线粒体是半自主细胞器,通过氧化磷酸化为细胞生化过程提供能量。在细胞内,数百个移动的线粒体经历融合和裂变事件,形成一个动态网络。这些形态和运动动力学对于维持线粒体功能稳态至关重要,其改变既影响又反映细胞应激状态。线粒体稳态进一步依赖于其产生(生物发生)以及通过选择性自噬(线粒体自噬)清除受损线粒体。虽然线粒体功能、动力学、生物发生和线粒体自噬是高度整合的过程,但目前尚不完全清楚细胞内的系统控制是如何建立以维持稳态,或响应生物能量需求的。在这里,我们使用基于主体的建模(ABM)来整合分子和成像知识集,并模拟线粒体的群体动态及其对环境能量需求的响应。通过高维参数搜索,我们整合了实验测量的线粒体生物发生和线粒体自噬速率,并通过敏感性分析确定了参数对群体稳态的影响。通过研究具有不同线粒体质量的细胞亚群的动态,我们的方法揭示了线粒体群体的系统特性:(1)线粒体融合和裂变活动迅速建立线粒体亚群稳态,线粒体的总细胞水平改变融合和裂变活动以及亚群分布;(2)限制线粒体移动的方向性不会改变形态亚群分布,但会增加网络传输动力学;(3)维持线粒体质量稳态并响应生物能量应激需要将线粒体动力学与细胞生物能量状态整合。最后,(4)我们的模型表明了线粒体形态和能量应激状态的细胞间变异性的来源以及放大应激条件。总体而言,我们的建模方法整合了生化和成像知识,并提出了一种新颖的开放建模方法,以研究时空线粒体动力学如何促进功能稳态,以及亚细胞器异质性如何导致细胞异质性的出现。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ec0b/5217980/ba3198f5629a/pone.0168198.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验