Biofilm Research Group, Department of Biological Sciences, University of Calgary, Calgary, AB, Canada.
Imperial - Sarnia Technology Applications & Research, Sarnia, ON, Canada.
Bioresour Technol. 2017 Mar;228:116-124. doi: 10.1016/j.biortech.2016.12.086. Epub 2016 Dec 24.
Bacteria are often found tolerating polluted environments. Such bacteria may be exploited to bioremediate contaminants in controlled ex situ reactor systems. One potential strategic goal of such systems is to harness microbes directly from the environment such that they exhibit the capacity to markedly degrade organic pollutants of interest. Here, the use of biofilm cultivation techniques to inoculate and activate moving bed biofilm reactor (MBBR) systems for the degradation of polycyclic aromatic hydrocarbons (PAHs) was explored. Biofilms were cultivated from 4 different hydrocarbon contaminated sites using a minimal medium spiked with the 16 EPA identified PAHs. Overall, all 4 inoculant sources resulted in biofilm communities capable of tolerating the presence of PAHs, but only 2 of these exhibited enhanced PAH catabolic gene prevalence coupled with significant degradation of select PAH compounds. Comparisons between inoculant sources highlighted the dependence of this method on appropriate inoculant screening and biostimulation efforts.
细菌通常能耐受污染环境。这些细菌可用于生物修复受污染的环境,在特定的异位反应系统中进行控制。这些系统的一个潜在的战略目标是直接利用环境中的微生物,使它们具有明显降解目标有机污染物的能力。在这里,使用生物膜培养技术接种和激活移动床生物膜反应器(MBBR)系统,以降解多环芳烃(PAHs)。从 4 个不同的碳氢化合物污染地点使用最小培养基培养生物膜,该培养基中添加了 16 种 EPA 确定的 PAHs。总的来说,所有 4 个接种源都产生了能够耐受 PAHs 存在的生物膜群落,但只有其中 2 个显示出增强的 PAH 代谢基因普遍性,以及对特定 PAH 化合物的显著降解。接种源的比较突出了该方法对适当的接种源筛选和生物刺激的依赖性。