Suppr超能文献

多环芳烃的生物降解:利用微生物生物电化学系统克服困境。

Biodegradation of polycyclic aromatic hydrocarbons: Using microbial bioelectrochemical systems to overcome an impasse.

机构信息

LBE, INRA, 102 avenue des Etangs, 11100 Narbonne, France.

LBE, INRA, 102 avenue des Etangs, 11100 Narbonne, France.

出版信息

Environ Pollut. 2017 Dec;231(Pt 1):509-523. doi: 10.1016/j.envpol.2017.08.048. Epub 2017 Aug 29.

Abstract

Polycyclic aromatic hydrocarbons (PAHs) are hardly biodegradable carcinogenic organic compounds. Bioremediation is a commonly used method for treating PAH contaminated environments such as soils, sediment, water bodies and wastewater. However, bioremediation has various drawbacks including the low abundance, diversity and activity of indigenous hydrocarbon degrading bacteria, their slow growth rates and especially a limited bioavailability of PAHs in the aqueous phase. Addition of nutrients, electron acceptors or co-substrates to enhance indigenous microbial activity is costly and added chemicals often diffuse away from the target compound, thus pointing out an impasse for the bioremediation of PAHs. A promising solution is the adoption of bioelectrochemical systems. They guarantee a permanent electron supply and withdrawal for microorganisms, thereby circumventing the traditional shortcomings of bioremediation. These systems combine biological treatment with electrochemical oxidation/reduction by supplying an anode and a cathode that serve as an electron exchange facility for the biocatalyst. Here, recent achievements in polycyclic aromatic hydrocarbon removal using bioelectrochemical systems have been reviewed. This also concerns PAH precursors: total petroleum hydrocarbons and diesel. Removal performances of PAH biodegradation in bioelectrochemical systems are discussed, focussing on configurational parameters such as anode and cathode designs as well as environmental parameters like porosity, salinity, adsorption and conductivity of soil and sediment that affect PAH biodegradation in BESs. The still scarcely available information on microbiological aspects of bioelectrochemical PAH removal is summarised here. This comprehensive review offers a better understanding of the parameters that affect the removal of PAHs within bioelectrochemical systems. In addition, future experimental setups are proposed in order to study syntrophic relationships between PAH degraders and exoelectrogens. This synopsis can help as guide for researchers in their choices for future experimental designs aiming at increasing the power densities and PAH biodegradation rates using microbial bioelectrochemistry.

摘要

多环芳烃(PAHs)是难以生物降解的致癌有机化合物。生物修复是一种常用于处理土壤、沉积物、水体和废水等 PAH 污染环境的方法。然而,生物修复存在各种缺点,包括土著烃降解细菌的丰度、多样性和活性低、生长缓慢,特别是水相中的 PAH 生物可利用性有限。添加营养物质、电子受体或共底物来增强土著微生物的活性是昂贵的,并且添加的化学物质经常从目标化合物扩散出去,从而使 PAHs 的生物修复陷入僵局。一个有前途的解决方案是采用生物电化学系统。它们为微生物提供永久的电子供应和提取,从而避免了生物修复的传统缺点。这些系统通过提供阳极和阴极将生物处理与电化学氧化/还原结合在一起,作为生物催化剂的电子交换设施。在这里,综述了使用生物电化学系统去除多环芳烃的最新进展。这也涉及到多环芳烃的前体:总石油烃和柴油。讨论了生物电化学系统中多环芳烃生物降解的去除性能,重点讨论了配置参数,如阳极和阴极设计以及环境参数,如土壤和沉积物的孔隙率、盐度、吸附和电导率,这些参数会影响 BES 中 PAH 的生物降解。这里总结了生物电化学去除 PAH 中微生物学方面的信息仍然很少。本综述更全面地了解了影响生物电化学系统中 PAHs 去除的参数。此外,还提出了未来的实验方案,以研究 PAH 降解菌和外电子体之间的共生关系。这篇综述可以为研究人员提供指导,帮助他们在未来的实验设计中做出选择,以提高利用微生物生物电化学提高功率密度和 PAH 生物降解率。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验