Suppr超能文献

ESA-UbiSite:通过识别一组有效的阴性样本准确预测人类泛素化位点

ESA-UbiSite: accurate prediction of human ubiquitination sites by identifying a set of effective negatives.

作者信息

Wang Jyun-Rong, Huang Wen-Lin, Tsai Ming-Ju, Hsu Kai-Ti, Huang Hui-Ling, Ho Shinn-Ying

机构信息

Institute of Bioinformatics and Systems Biology, National Chiao Tung University, Hsinchu 300, Taiwan.

Department and Institute of Industrial Engineering and Management, Minghsin University of Science and Technology, Hsinchu 300, Taiwan.

出版信息

Bioinformatics. 2017 Mar 1;33(5):661-668. doi: 10.1093/bioinformatics/btw701.

Abstract

MOTIVATION

Numerous ubiquitination sites remain undiscovered because of the limitations of mass spectrometry-based methods. Existing prediction methods use randomly selected non-validated sites as non-ubiquitination sites to train ubiquitination site prediction models.

RESULTS

We propose an evolutionary screening algorithm (ESA) to select effective negatives among non-validated sites and an ESA-based prediction method, ESA-UbiSite, to identify human ubiquitination sites. The ESA selects non-validated sites least likely to be ubiquitination sites as training negatives. Moreover, the ESA and ESA-UbiSite use a set of well-selected physicochemical properties together with a support vector machine for accurate prediction. Experimental results show that ESA-UbiSite with effective negatives achieved 0.92 test accuracy and a Matthews's correlation coefficient of 0.48, better than existing prediction methods. The ESA increased ESA-UbiSite's test accuracy from 0.75 to 0.92 and can improve other post-translational modification site prediction methods.

AVAILABILITY AND IMPLEMENTATION

An ESA-UbiSite-based web server has been established at http://iclab.life.nctu.edu.tw/iclab_webtools/ESAUbiSite/ .

CONTACT

syho@mail.nctu.edu.tw.

SUPPLEMENTARY INFORMATION

Supplementary data are available at Bioinformatics online.

摘要

动机

由于基于质谱的方法存在局限性,众多泛素化位点仍未被发现。现有的预测方法使用随机选择的未经验证的位点作为非泛素化位点来训练泛素化位点预测模型。

结果

我们提出了一种进化筛选算法(ESA),用于在未经验证的位点中选择有效的负样本,并提出了一种基于ESA的预测方法ESA-UbiSite,用于识别人类泛素化位点。ESA选择最不可能是泛素化位点的未经验证的位点作为训练负样本。此外,ESA和ESA-UbiSite使用一组精心选择的物理化学性质以及支持向量机进行准确预测。实验结果表明,带有有效负样本的ESA-UbiSite的测试准确率达到0.92,马修斯相关系数为0.48,优于现有预测方法。ESA将ESA-UbiSite的测试准确率从0.75提高到0.92,并且可以改进其他翻译后修饰位点预测方法。

可用性和实现方式

已在http://iclab.life.nctu.edu.tw/iclab_webtools/ESAUbiSite/ 建立了基于ESA-UbiSite的网络服务器。

联系方式

syho@mail.nctu.edu.tw

补充信息

补充数据可在《生物信息学》在线获取。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验