Suppr超能文献

黏膜屏障一览。

The mucosal barrier at a glance.

作者信息

France Marion M, Turner Jerrold R

机构信息

Department of Medicine (Gastroenterology, Hepatology, and Endoscopy), Brigham and Women's Hospital and Harvard Medical School, 20 Shattuck St, TH1428, Boston, MA 02115, USA.

Department of Medicine (Gastroenterology, Hepatology, and Endoscopy), Brigham and Women's Hospital and Harvard Medical School, 20 Shattuck St, TH1428, Boston, MA 02115, USA

出版信息

J Cell Sci. 2017 Jan 15;130(2):307-314. doi: 10.1242/jcs.193482. Epub 2017 Jan 6.

Abstract

Mucosal barriers separate self from non-self and are essential for life. These barriers, which are the first line of defense against external pathogens, are formed by epithelial cells and the substances they secrete. Rather than an absolute barrier, epithelia at mucosal surfaces must allow selective paracellular flux that discriminates between solutes and water while preventing the passage of bacteria and toxins. In vertebrates, tight junctions seal the paracellular space; flux across the tight junction can occur through two distinct routes that differ in selectivity, capacity, molecular composition and regulation. Dysregulation of either pathway can accompany disease. A third, tight-junction-independent route that reflects epithelial damage can also contribute to barrier loss during disease. In this Cell Science at a Glance article and accompanying poster, we present current knowledge on the molecular components and pathways that establish this selectively permeable barrier and the interactions that lead to barrier dysfunction during disease.

摘要

黏膜屏障将自身与非自身分隔开,对生命至关重要。这些作为抵御外部病原体的第一道防线的屏障,由上皮细胞及其分泌的物质构成。黏膜表面的上皮并非绝对的屏障,必须允许选择性的细胞旁通量,以区分溶质和水,同时防止细菌和毒素通过。在脊椎动物中,紧密连接封闭细胞旁间隙;通过紧密连接的通量可通过两条在选择性、容量、分子组成和调节方面不同的独特途径发生。任何一条途径的失调都可能伴随疾病发生。反映上皮损伤的第三条不依赖紧密连接的途径也可能在疾病期间导致屏障丧失。在这篇“细胞科学一览”文章及随附的海报中,我们介绍了有关建立这种选择性渗透屏障的分子成分和途径以及在疾病期间导致屏障功能障碍的相互作用的当前知识。

相似文献

1
The mucosal barrier at a glance.
J Cell Sci. 2017 Jan 15;130(2):307-314. doi: 10.1242/jcs.193482. Epub 2017 Jan 6.
3
Paracellular permeability and tight junction regulation in gut health and disease.
Nat Rev Gastroenterol Hepatol. 2023 Jul;20(7):417-432. doi: 10.1038/s41575-023-00766-3. Epub 2023 Apr 25.
5
Cell Biology of Tight Junction Barrier Regulation and Mucosal Disease.
Cold Spring Harb Perspect Biol. 2018 Jan 2;10(1):a029314. doi: 10.1101/cshperspect.a029314.
6
RhoGTPases, actomyosin signaling and regulation of the epithelial Apical Junctional Complex.
Semin Cell Dev Biol. 2014 Dec;36:194-203. doi: 10.1016/j.semcdb.2014.09.003. Epub 2014 Sep 16.
7
Dynamic properties of the tight junction barrier.
Ann N Y Acad Sci. 2012 Jun;1257:77-84. doi: 10.1111/j.1749-6632.2012.06528.x.
8
The role of molecular remodeling in differential regulation of tight junction permeability.
Semin Cell Dev Biol. 2014 Dec;36:204-12. doi: 10.1016/j.semcdb.2014.09.022. Epub 2014 Sep 28.
9
The tight junction and the epithelial barrier in coeliac disease.
Int Rev Cell Mol Biol. 2021;358:105-132. doi: 10.1016/bs.ircmb.2020.09.010. Epub 2020 Nov 13.
10
Claudins of intestine and nephron - a correlation of molecular tight junction structure and barrier function.
Acta Physiol (Oxf). 2011 Jan;201(1):133-40. doi: 10.1111/j.1748-1716.2010.02148.x.

引用本文的文献

1
Mucosal immunity and vaccination strategies: current insights and future perspectives.
Mol Biomed. 2025 Aug 20;6(1):57. doi: 10.1186/s43556-025-00301-7.
2
Synthetic Mucins as Glycan-Defined Prebiotics.
ACS Cent Sci. 2025 Jun 2;11(6):918-926. doi: 10.1021/acscentsci.5c00317. eCollection 2025 Jun 25.
6
Intestinal Cells-on-Chip for Permeability Studies.
Micromachines (Basel). 2024 Nov 30;15(12):1464. doi: 10.3390/mi15121464.
7
Evaluation of Intestinal Barrier Function after Exposure to Digested Pea Ingredients─Food Matrix Effect.
J Agric Food Chem. 2025 Jan 8;73(1):584-594. doi: 10.1021/acs.jafc.4c09963. Epub 2024 Dec 16.
9
Development of engineered IL-36γ-hypersecreting Lactococcus lactis to improve the intestinal environment.
World J Microbiol Biotechnol. 2024 Oct 24;40(11):363. doi: 10.1007/s11274-024-04157-x.
10
Microbiota in tumors: new factor influencing cancer development.
Cancer Gene Ther. 2024 Dec;31(12):1773-1785. doi: 10.1038/s41417-024-00833-0. Epub 2024 Sep 28.

本文引用的文献

2
ZO-1 interactions with F-actin and occludin direct epithelial polarization and single lumen specification in 3D culture.
J Cell Sci. 2017 Jan 1;130(1):243-259. doi: 10.1242/jcs.188185. Epub 2016 Oct 21.
3
Epithelial Regeneration After Gastric Ulceration Causes Prolonged Cell-Type Alterations.
Cell Mol Gastroenterol Hepatol. 2016 May 17;2(5):625-647. doi: 10.1016/j.jcmgh.2016.05.005. eCollection 2016 Sep.
4
Cryptosporidium Priming Is More Effective than Vaccine for Protection against Cryptosporidiosis in a Murine Protein Malnutrition Model.
PLoS Negl Trop Dis. 2016 Jul 28;10(7):e0004820. doi: 10.1371/journal.pntd.0004820. eCollection 2016 Jul.
5
Claudin-2-mediated cation and water transport share a common pore.
Acta Physiol (Oxf). 2017 Feb;219(2):521-536. doi: 10.1111/apha.12742. Epub 2016 Jul 20.
6
Remodeling the zonula adherens in response to tension and the role of afadin in this response.
J Cell Biol. 2016 Apr 25;213(2):243-60. doi: 10.1083/jcb.201506115.
7
Endomicroscopic and Transcriptomic Analysis of Impaired Barrier Function and Malabsorption in Environmental Enteropathy.
PLoS Negl Trop Dis. 2016 Apr 6;10(4):e0004600. doi: 10.1371/journal.pntd.0004600. eCollection 2016 Apr.
9
Environmental Enteric Dysfunction Includes a Broad Spectrum of Inflammatory Responses and Epithelial Repair Processes.
Cell Mol Gastroenterol Hepatol. 2015 Dec 11;2(2):158-174.e1. doi: 10.1016/j.jcmgh.2015.12.002. eCollection 2016 Feb.
10
Enterohemorrhagic reduce mucus and intermicrovillar bridges in human stem cell-derived colonoids.
Cell Mol Gastroenterol Hepatol. 2016 Jan 1;2(1):48-62.e3. doi: 10.1016/j.jcmgh.2015.10.001.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验