Suppr超能文献

使用纳米孔测序进行快速耐药基因组图谱绘制。

Rapid resistome mapping using nanopore sequencing.

作者信息

van der Helm Eric, Imamovic Lejla, Hashim Ellabaan Mostafa M, van Schaik Willem, Koza Anna, Sommer Morten O A

机构信息

Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark.

Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands.

出版信息

Nucleic Acids Res. 2017 May 5;45(8):e61. doi: 10.1093/nar/gkw1328.

Abstract

The emergence of antibiotic resistance in human pathogens has become a major threat to modern medicine. The outcome of antibiotic treatment can be affected by the composition of the gut. Accordingly, knowledge of the gut resistome composition could enable more effective and individualized treatment of bacterial infections. Yet, rapid workflows for resistome characterization are lacking. To address this challenge we developed the poreFUME workflow that deploys functional metagenomic selections and nanopore sequencing to resistome mapping. We demonstrate the approach by functionally characterizing the gut resistome of an ICU (intensive care unit) patient. The accuracy of the poreFUME pipeline is with >97% sufficient for the annotation of antibiotic resistance genes. The poreFUME pipeline provides a promising approach for efficient resistome profiling that could inform antibiotic treatment decisions in the future.

摘要

人类病原体中抗生素耐药性的出现已成为现代医学的一大威胁。抗生素治疗的结果可能会受到肠道菌群组成的影响。因此,了解肠道耐药基因组的组成有助于更有效、更个性化地治疗细菌感染。然而,目前缺乏用于耐药基因组表征的快速工作流程。为应对这一挑战,我们开发了poreFUME工作流程,该流程利用功能宏基因组筛选和纳米孔测序来进行耐药基因组图谱绘制。我们通过对一名重症监护病房(ICU)患者的肠道耐药基因组进行功能表征来展示这一方法。poreFUME流程的准确性大于97%,足以用于抗生素耐药基因的注释。poreFUME流程为高效的耐药基因组分析提供了一种很有前景的方法,有望为未来的抗生素治疗决策提供依据。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/22df/5416750/3de5806d3dab/gkw1328fig1.jpg

相似文献

1
Rapid resistome mapping using nanopore sequencing.
Nucleic Acids Res. 2017 May 5;45(8):e61. doi: 10.1093/nar/gkw1328.
2
Antibiotic resistomes of healthy pig faecal metagenomes.
Microb Genom. 2019 May;5(5). doi: 10.1099/mgen.0.000272. Epub 2019 May 15.
4
Dose-dependent impact of oxytetracycline on the veal calf microbiome and resistome.
BMC Genomics. 2019 Jan 19;20(1):65. doi: 10.1186/s12864-018-5419-x.
5
The Human Gut Resistome up to Extreme Longevity.
mSphere. 2021 Oct 27;6(5):e0069121. doi: 10.1128/mSphere.00691-21. Epub 2021 Sep 8.
7
Analysis of 1135 gut metagenomes identifies sex-specific resistome profiles.
Gut Microbes. 2019;10(3):358-366. doi: 10.1080/19490976.2018.1528822. Epub 2018 Oct 29.
8
The Gut Microbiome as a Reservoir for Antimicrobial Resistance.
J Infect Dis. 2021 Jun 16;223(12 Suppl 2):S209-S213. doi: 10.1093/infdis/jiaa497.
9
Country-specific antibiotic use practices impact the human gut resistome.
Genome Res. 2013 Jul;23(7):1163-9. doi: 10.1101/gr.155465.113. Epub 2013 Apr 8.
10
Translational metagenomics and the human resistome: confronting the menace of the new millennium.
J Mol Med (Berl). 2017 Jan;95(1):41-51. doi: 10.1007/s00109-016-1478-0. Epub 2016 Oct 20.

引用本文的文献

1
Leveraging the microbiome to combat antibiotic resistant gynecological infections.
NPJ Antimicrob Resist. 2025 Apr 23;3(1):32. doi: 10.1038/s44259-025-00106-2.
2
Antibody diversity in IVIG: Therapeutic opportunities for novel immunotherapeutic drugs.
Front Immunol. 2023 Mar 28;14:1166821. doi: 10.3389/fimmu.2023.1166821. eCollection 2023.
4
Next Generation Sequencing Approaches to Characterize the Respiratory Tract Virome.
Microorganisms. 2022 Nov 24;10(12):2327. doi: 10.3390/microorganisms10122327.
5
Antibiotic resistance in chronic respiratory diseases: from susceptibility testing to the resistome.
Eur Respir Rev. 2022 May 25;31(164). doi: 10.1183/16000617.0259-2021. Print 2022 Jun 30.
6
Linkage and association analyses reveal that hub genes in energy-flow and lipid biosynthesis pathways form a cluster in upland cotton.
Comput Struct Biotechnol J. 2022 Apr 15;20:1841-1859. doi: 10.1016/j.csbj.2022.04.012. eCollection 2022.
7
A review of the resistome within the digestive tract of livestock.
J Anim Sci Biotechnol. 2021 Nov 11;12(1):121. doi: 10.1186/s40104-021-00643-6.
9
Long-read metagenomics retrieves complete single-contig bacterial genomes from canine feces.
BMC Genomics. 2021 May 6;22(1):330. doi: 10.1186/s12864-021-07607-0.
10
Nanopore sequencing and its application to the study of microbial communities.
Comput Struct Biotechnol J. 2021 Mar 7;19:1497-1511. doi: 10.1016/j.csbj.2021.02.020. eCollection 2021.

本文引用的文献

1
CARD 2017: expansion and model-centric curation of the comprehensive antibiotic resistance database.
Nucleic Acids Res. 2017 Jan 4;45(D1):D566-D573. doi: 10.1093/nar/gkw1004. Epub 2016 Oct 26.
2
Developmental dynamics of the preterm infant gut microbiota and antibiotic resistome.
Nat Microbiol. 2016 Mar 7;1:16024. doi: 10.1038/nmicrobiol.2016.24.
4
Interconnected microbiomes and resistomes in low-income human habitats.
Nature. 2016 May 12;533(7602):212-6. doi: 10.1038/nature17672.
5
Identification and analysis of integrons and cassette arrays in bacterial genomes.
Nucleic Acids Res. 2016 Jun 2;44(10):4539-50. doi: 10.1093/nar/gkw319. Epub 2016 Apr 29.
6
Metagenomic Comparison of Antibiotic Resistance Genes Associated with Liquid and Dewatered Biosolids.
J Environ Qual. 2016 Mar;45(2):463-70. doi: 10.2134/jeq2015.05.0255.
7
Clonal expansion of Escherichia coli ST38 carrying a chromosomally integrated OXA-48 carbapenemase gene.
J Med Microbiol. 2016 Jun;65(6):538-546. doi: 10.1099/jmm.0.000248. Epub 2016 Mar 16.
9
Early insights into the potential of the Oxford Nanopore MinION for the detection of antimicrobial resistance genes.
J Antimicrob Chemother. 2015 Oct;70(10):2775-8. doi: 10.1093/jac/dkv206. Epub 2015 Jul 28.
10
A complete bacterial genome assembled de novo using only nanopore sequencing data.
Nat Methods. 2015 Aug;12(8):733-5. doi: 10.1038/nmeth.3444. Epub 2015 Jun 15.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验