文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

益生菌以个体特异性和抗生素依赖性的方式影响人类胃肠道中的抗生素耐药基因库。

Probiotics impact the antibiotic resistance gene reservoir along the human GI tract in a person-specific and antibiotic-dependent manner.

机构信息

Microbiota Hosts Antibiotics and Bacterial Resistances, Université de Nantes, Nantes, France.

Department of Emergency Medicine, Centre Hospitalier Universitaire de Nantes, Nantes, France.

出版信息

Nat Microbiol. 2021 Aug;6(8):1043-1054. doi: 10.1038/s41564-021-00920-0. Epub 2021 Jul 5.


DOI:10.1038/s41564-021-00920-0
PMID:34226711
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC8318886/
Abstract

Antimicrobial resistance poses a substantial threat to human health. The gut microbiome is considered a reservoir for potential spread of resistance genes from commensals to pathogens, termed the gut resistome. The impact of probiotics, commonly consumed by many in health or in conjunction with the administration of antibiotics, on the gut resistome is elusive. Reanalysis of gut metagenomes from healthy antibiotics-naïve humans supplemented with an 11-probiotic-strain preparation, allowing direct assessment of the gut resistome in situ along the gastrointestinal (GI) tract, demonstrated that probiotics reduce the number of antibiotic resistance genes exclusively in the gut of colonization-permissive individuals. In mice and in a separate cohort of humans, a course of antibiotics resulted in expansion of the lower GI tract resistome, which was mitigated by autologous faecal microbiome transplantation or during spontaneous recovery. In contrast, probiotics further exacerbated resistome expansion in the GI mucosa by supporting the bloom of strains carrying vancomycin resistance genes but not resistance genes encoded by the probiotic strains. Importantly, the aforementioned effects were not reflected in stool samples, highlighting the importance of direct sampling to analyse the effect of probiotics and antibiotics on the gut resistome. Analysing antibiotic resistance gene content in additional published clinical trials with probiotics further highlighted the importance of person-specific metagenomics-based profiling of the gut resistome using direct sampling. Collectively, these findings suggest opposing person-specific and antibiotic-dependent effects of probiotics on the resistome, whose contribution to the spread of antimicrobial resistance genes along the human GI tract merit further studies.

摘要

抗微生物药物耐药性对人类健康构成重大威胁。肠道微生物组被认为是从共生菌到病原体的耐药基因潜在传播的储库,称为肠道耐药组。益生菌通常被许多人在健康或与抗生素联合使用时消费,但其对肠道耐药组的影响尚不清楚。对健康、未使用抗生素的人类的肠道宏基因组进行重新分析,这些人补充了一种 11 种益生菌菌株制剂,允许在胃肠道(GI)中直接评估原位肠道耐药组,结果表明益生菌仅在定植允许的个体的肠道中减少抗生素耐药基因的数量。在小鼠和另一组人类中,抗生素疗程导致下胃肠道耐药组的扩张,而通过自体粪便微生物组移植或自发恢复可以减轻这种扩张。相比之下,益生菌通过支持携带万古霉素耐药基因的菌株的繁荣而不是益生菌菌株编码的耐药基因,进一步加剧了 GI 黏膜中的耐药组扩张。重要的是,上述效应并未反映在粪便样本中,这突出了直接采样分析益生菌和抗生素对肠道耐药组的影响的重要性。分析其他发表的益生菌临床试验中的抗生素耐药基因含量,进一步强调了使用直接采样对肠道耐药组进行基于个体的宏基因组学分析的重要性。总的来说,这些发现表明益生菌对耐药组的影响存在个体特异性和抗生素依赖性,其对抗微生物耐药基因在人类胃肠道传播的贡献值得进一步研究。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/da00/8318886/f8b49b2ed1b9/41564_2021_920_Fig12_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/da00/8318886/5c3c8f092aa2/41564_2021_920_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/da00/8318886/3f61ada358f7/41564_2021_920_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/da00/8318886/e38904713064/41564_2021_920_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/da00/8318886/c036c66c2c49/41564_2021_920_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/da00/8318886/8532e56cdc58/41564_2021_920_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/da00/8318886/65eb46aa6df2/41564_2021_920_Fig6_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/da00/8318886/4804c78dd806/41564_2021_920_Fig7_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/da00/8318886/8cb07254a76e/41564_2021_920_Fig8_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/da00/8318886/f91f9b345fa0/41564_2021_920_Fig9_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/da00/8318886/882e57f1d801/41564_2021_920_Fig10_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/da00/8318886/ba52d7884106/41564_2021_920_Fig11_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/da00/8318886/f8b49b2ed1b9/41564_2021_920_Fig12_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/da00/8318886/5c3c8f092aa2/41564_2021_920_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/da00/8318886/3f61ada358f7/41564_2021_920_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/da00/8318886/e38904713064/41564_2021_920_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/da00/8318886/c036c66c2c49/41564_2021_920_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/da00/8318886/8532e56cdc58/41564_2021_920_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/da00/8318886/65eb46aa6df2/41564_2021_920_Fig6_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/da00/8318886/4804c78dd806/41564_2021_920_Fig7_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/da00/8318886/8cb07254a76e/41564_2021_920_Fig8_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/da00/8318886/f91f9b345fa0/41564_2021_920_Fig9_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/da00/8318886/882e57f1d801/41564_2021_920_Fig10_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/da00/8318886/ba52d7884106/41564_2021_920_Fig11_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/da00/8318886/f8b49b2ed1b9/41564_2021_920_Fig12_ESM.jpg

相似文献

[1]
Probiotics impact the antibiotic resistance gene reservoir along the human GI tract in a person-specific and antibiotic-dependent manner.

Nat Microbiol. 2021-8

[2]
Comparative gut microbiota and resistome profiling of intensive care patients receiving selective digestive tract decontamination and healthy subjects.

Microbiome. 2017-8-14

[3]
Antibiotic resistomes of healthy pig faecal metagenomes.

Microb Genom. 2019-5-15

[4]
The Human Gut Resistome up to Extreme Longevity.

mSphere. 2021-10-27

[5]
Potential influence of antimicrobial resistance gene content in probiotic bacteria on the gut resistome ecosystems.

Front Nutr. 2023-2-1

[6]
Post-Antibiotic Gut Mucosal Microbiome Reconstitution Is Impaired by Probiotics and Improved by Autologous FMT.

Cell. 2018-9-6

[7]
A cohort study in family triads: impact of gut microbiota composition and early life exposures on intestinal resistome during the first two years of life.

Gut Microbes. 2024

[8]
Good microbes, bad genes? The dissemination of antimicrobial resistance in the human microbiome.

Gut Microbes. 2022

[9]
Changes in the Functional Potential of the Gut Microbiome Following Probiotic Supplementation during Helicobacter Pylori Treatment.

Helicobacter. 2016-12

[10]
Systematic review of human gut resistome studies revealed variable definitions and approaches.

Gut Microbes. 2020-11-9

引用本文的文献

[1]
Comparative Genome Analysis and Characterization of Lacticaseibacillus Paracasei NKN344 Strain Isolated from Curd of Buffalo Milk Reared on Brackish Water Lagoons of the Eastern Indian Coast.

Probiotics Antimicrob Proteins. 2025-9-8

[2]
Probiotic-Based Cleaning Solutions: From Research Hypothesis to Infection Control Applications.

Biology (Basel). 2025-8-13

[3]
Rationally designed microbial communities in agri-food production systems: from research to market.

ISME Commun. 2025-7-23

[4]
Spatio-temporal characteristics of the gastrointestinal resistome in a cow-to-calf model and its environmental dissemination in a dairy production system.

Imeta. 2025-5-14

[5]
Microplastics and antibiotic resistance genes as rising threats: Their interaction represents an urgent environmental concern.

Curr Res Microb Sci. 2025-7-22

[6]
Antibiotic Resistance in subsp. and : Definition of Sensitivity/Resistance Profiles at the Species Level.

Microorganisms. 2025-7-11

[7]
Phylogroup Homeostasis of in the Human Gut Reflects the Physiological State of the Host.

Microorganisms. 2025-7-4

[8]
Progress and gaps in antimicrobial resistance research within One Health sectors in China: a systematic analysis.

Sci China Life Sci. 2025-7-16

[9]
Gut Feelings: How Microbes, Diet, and Host Immunity Shape Disease.

Biomedicines. 2025-5-31

[10]
Immune metabolic restoration in systemic lupus erythematosus: the impact of gut microbiota, probiotics, and nutritional synergy.

Front Immunol. 2025-6-4

本文引用的文献

[1]
Gut microbiome-related effects of berberine and probiotics on type 2 diabetes (the PREMOTE study).

Nat Commun. 2020-10-6

[2]
Dysbiosis individualizes the fitness effect of antibiotic resistance in the mammalian gut.

Nat Ecol Evol. 2020-7-6

[3]
Using SPAdes De Novo Assembler.

Curr Protoc Bioinformatics. 2020-6

[4]
The microbiome and resistome of chimpanzees, gorillas, and humans across host lifestyle and geography.

ISME J. 2020-3-20

[5]
sraX: A Novel Comprehensive Resistome Analysis Tool.

Front Microbiol. 2020-2-5

[6]
Potential Elimination of Human Gut Resistome by Exploiting the Benefits of Functional Foods.

Front Microbiol. 2020-2-11

[7]
Revealing antibiotic resistance in therapeutic and dietary probiotic supplements.

J Glob Antimicrob Resist. 2020-9

[8]
Probiotics maintain the intestinal microbiome homeostasis of the sailors during a long sea voyage.

Gut Microbes. 2020-7-3

[9]
ARGminer: a web platform for the crowdsourcing-based curation of antibiotic resistance genes.

Bioinformatics. 2020-5-1

[10]
Improved metagenomic analysis with Kraken 2.

Genome Biol. 2019-11-28

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索