Department of Biochemistry, Abdul Wali Khan University Mardan, Mardan, 23200, Pakistan; Chinese Academy of Sciences (CAS) Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology (PICB), Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China.
Department of Biochemistry, Abdul Wali Khan University Mardan, Mardan, 23200, Pakistan.
Comput Biol Chem. 2017 Apr;67:84-91. doi: 10.1016/j.compbiolchem.2016.12.014. Epub 2016 Dec 31.
The rational design of small molecules that mimic key residues at the interface of interacting proteins can be a successful approach to target certain biological signaling cascades causing pathophysiological outcome. The A-Kinase Anchoring Protein, i.e. AKAP-Lbc, catalyses nucleotide exchange on RhoA and is involved in cardiac repolarization. The oncogenic AKAP-Lbc induces the RhoA GTPase hyperactivity and aberrantly amplifies the signaling pathway leading to hypertrophic cardiomyocytes. We took advantage of the AKAP-Lbc-RhoA complex crystal structure to design in silico small molecules predicted to inhibit the associated pathological signaling cascade. We adopted the strategies of pharmacophore building, virtual screening and molecular docking to identify the small molecules capable to target AKAP-Lbc and RhoA interactions. The pharmacophore model based virtual screening unveils two lead compounds from the TIMBAL database of small molecules modulating the targeted protein-protein interactions. The molecular docking analysis revealed the lead compounds' potentialities to establish the essential chemical interactions with the key interactive residues of the complex. These features provided a road map for designing additional potent chemical derivatives and fragments of the original lead compounds to perturb the AKAP-Lbc and RhoA interactions. Experimental validations may elucidate the therapeutic potential of these lead chemical scaffolds to deal with aberrant AKAP-Lbc signaling based cardiac hypertrophy.
小分子的合理设计可以模拟相互作用蛋白界面上的关键残基,这是靶向特定生物信号级联反应从而导致病理生理结果的成功方法。A-激酶锚定蛋白(AKAP-Lbc)可催化 RhoA 的核苷酸交换,参与心脏复极化。致癌 AKAP-Lbc 诱导 RhoA GTP 酶的过度活跃,并异常放大导致肥大心肌细胞的信号通路。我们利用 AKAP-Lbc-RhoA 复合物晶体结构来设计计算机小分子,预测它们能够抑制相关的病理信号级联反应。我们采用药效团构建、虚拟筛选和分子对接等策略来识别能够靶向 AKAP-Lbc 和 RhoA 相互作用的小分子。基于药效团的虚拟筛选揭示了来自小分子 TIMBAL 数据库的两种先导化合物,它们能够调节靶向蛋白-蛋白相互作用。分子对接分析揭示了先导化合物与复合物关键相互作用残基建立必要化学相互作用的潜力。这些特征为设计额外的有效化学衍生物和原始先导化合物的片段提供了蓝图,以干扰 AKAP-Lbc 和 RhoA 的相互作用。实验验证可能阐明这些先导化学支架的治疗潜力,以应对基于 AKAP-Lbc 信号的异常心脏肥大。