Suppr超能文献

小分子调节水通道蛋白-2 的定位:疾病相关性及靶向局部 cAMP 信号的展望。

Small molecules for modulating the localisation of the water channel aquaporin-2-disease relevance and perspectives for targeting local cAMP signalling.

机构信息

Max Delbrück Center for Molecular Medicine Berlin (MDC), Helmholtz Association, Robert-Rössle-Strasse 10, 13125, Berlin, Germany.

DZHK (German Centre for Cardiovascular Research), partner site Berlin, Berlin, Germany.

出版信息

Naunyn Schmiedebergs Arch Pharmacol. 2019 Sep;392(9):1049-1064. doi: 10.1007/s00210-019-01686-3. Epub 2019 Jul 12.

Abstract

The tight spatial and temporal organisation of cyclic adenosine monophosphate (cAMP) signalling plays a key role in arginine-vasopressin (AVP)-mediated water reabsorption in renal collecting duct principal cells and in a plethora of other processes such as in the control of cardiac myocyte contractility. This review critically discusses in vitro- and cell-based screening strategies for the identification of small molecules that interfere with AVP/cAMP signalling in renal principal cells; it features phenotypic screening and approaches for targeting protein-protein interactions of A-kinase anchoring proteins (AKAPs), which organise local cAMP signalling hubs. The discovery of novel chemical entities for the modulation of local cAMP will not only provide tools for elucidating molecular mechanisms underlying cAMP signalling. Novel chemical entities can also serve as starting points for the development of novel drugs for the treatment of human diseases. Examples illustrate how screening for small molecules can pave the way to novel approaches for the treatment of certain forms of diabetes insipidus, a disease caused by defects in AVP-mediated water reabsorption.

摘要

环磷酸腺苷 (cAMP) 信号的紧密时空组织在精氨酸加压素 (AVP) 介导的肾脏集合管主细胞中的水重吸收以及许多其他过程中发挥着关键作用,如心肌细胞收缩力的控制。本综述批判性地讨论了用于鉴定干扰肾脏主细胞中 AVP/cAMP 信号的小分子的体外和基于细胞的筛选策略;它以表型筛选为特色,并针对蛋白激酶锚定蛋白 (AKAP) 的蛋白-蛋白相互作用的方法,这些方法组织局部 cAMP 信号枢纽。新型化学实体的发现可用于调节局部 cAMP,这不仅为阐明 cAMP 信号的分子机制提供了工具。新型化学实体也可以作为开发用于治疗人类疾病的新型药物的起点。示例说明了筛选小分子如何为治疗某些形式的尿崩症(由 AVP 介导的水重吸收缺陷引起的疾病)的新方法铺平道路。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验