Schifferer M, Feng S, Stein F, Schultz C
European Molecular Biology Laboratory (EMBL), Heidelberg, Germany.
European Molecular Biology Laboratory (EMBL), Heidelberg, Germany; NCCR Chemical Biology, University of Geneva, Geneva, Switzerland.
Methods Enzymol. 2017;583:173-195. doi: 10.1016/bs.mie.2016.10.035. Epub 2016 Dec 19.
An optimal tool to unravel the role of a specific player within a cellular network or process requires its spatiotemporally resolved perturbation. Chemically induced dimerization (CID) by the rapamycin system has proven useful to induce protein dimerization or translocation with high spatiotemporal precision. Recently, we and others have added reversibility of the dimerization event as a novel feature to CID approaches. Among those, our reversible chemical dimerizer (rCD1) shows the fastest release kinetics observed, comparable to optogenetic methods. Induction and termination of enzyme activities, including phosphatidylinositol 3-kinase (PI3K) and 5-phosphatase (5Ptase), therefore allowed us to monitor the relaxation of the downstream effectors within living cells by imaging and traditional biochemical methods. Because switching off the rCD1-induced enzyme activity is sufficiently fast, it is possible to estimate kinetic parameters for enzyme activity and metabolism. Fast reversible CIDs are therefore unique tools for performing semiquantitative biochemistry in intact cells. In this chapter, we discuss advantages and constraints for the design of reversible CID applications. We provide detailed protocols for rCD1 synthesis, CID component expression in and delivery to mammalian cells and the determination of enzyme kinetics inside intact cells by a specially designed image acquisition and data analysis method.
要阐明细胞网络或过程中特定参与者的作用,一种理想的工具需要对其进行时空分辨的扰动。雷帕霉素系统介导的化学诱导二聚化(CID)已被证明有助于以高时空精度诱导蛋白质二聚化或易位。最近,我们和其他研究人员在CID方法中加入了二聚化事件的可逆性这一新颖特性。其中,我们的可逆化学二聚体(rCD1)表现出目前观察到的最快释放动力学,与光遗传学方法相当。因此,通过诱导和终止包括磷脂酰肌醇3激酶(PI3K)和5-磷酸酶(5Ptase)在内的酶活性,我们能够通过成像和传统生化方法监测活细胞内下游效应物的弛豫情况。由于关闭rCD1诱导的酶活性足够快,因此有可能估算酶活性和代谢的动力学参数。因此,快速可逆的CID是在完整细胞中进行半定量生物化学研究的独特工具。在本章中,我们将讨论可逆CID应用设计的优点和局限性。我们提供了rCD1合成、CID组件在哺乳动物细胞中的表达和递送,以及通过专门设计的图像采集和数据分析方法测定完整细胞内酶动力学的详细方案。