Benedetti Lorena
Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, Virginia.
Curr Protoc. 2021 Mar;1(3):e71. doi: 10.1002/cpz1.71.
Intracellular signaling processes are frequently based on direct interactions between proteins and organelles. A fundamental strategy to elucidate the physiological significance of such interactions is to utilize optical dimerization tools. These tools are based on the use of small proteins or domains that interact with each other upon light illumination. Optical dimerizers are particularly suitable for reproducing and interrogating a given protein-protein interaction and for investigating a protein's intracellular role in a spatially and temporally precise manner. Described in this article are genetic engineering strategies for the generation of modular light-activatable protein dimerization units and instructions for the preparation of optogenetic applications in mammalian cells. Detailed protocols are provided for the use of light-tunable switches to regulate protein recruitment to intracellular compartments, induce intracellular organellar membrane tethering, and reconstitute protein function using enhanced Magnets (eMags), a recently engineered optical dimerization system. © 2021 Wiley Periodicals LLC. Basic Protocol 1: Genetic engineering strategy for the generation of modular light-activated protein dimerization units Support Protocol 1: Molecular cloning Basic Protocol 2: Cell culture and transfection Support Protocol 2: Production of dark containers for optogenetic samples Basic Protocol 3: Confocal microscopy and light-dependent activation of the dimerization system Alternate Protocol 1: Protein recruitment to intracellular compartments Alternate Protocol 2: Induction of organelles' membrane tethering Alternate Protocol 3: Optogenetic reconstitution of protein function Basic Protocol 4: Image analysis Support Protocol 3: Analysis of apparent on- and off-kinetics Support Protocol 4: Analysis of changes in organelle overlap over time.
细胞内信号传导过程通常基于蛋白质与细胞器之间的直接相互作用。阐明此类相互作用的生理意义的一个基本策略是利用光学二聚化工具。这些工具基于使用在光照下相互作用的小蛋白质或结构域。光学二聚体特别适合于重现和研究给定的蛋白质 - 蛋白质相互作用,以及以空间和时间精确的方式研究蛋白质在细胞内的作用。本文描述了用于生成模块化光激活蛋白质二聚化单元的基因工程策略,以及在哺乳动物细胞中制备光遗传学应用的说明。提供了详细的方案,用于使用光可调开关来调节蛋白质募集到细胞内区室、诱导细胞内细胞器膜拴系,以及使用增强型磁体(eMags)重建蛋白质功能,eMags是一种最近设计的光学二聚化系统。© 2021威利期刊有限责任公司。基本方案1:生成模块化光激活蛋白质二聚化单元的基因工程策略支持方案1:分子克隆基本方案2:细胞培养和转染支持方案2:用于光遗传学样品的暗容器的制备基本方案3:共聚焦显微镜检查和二聚化系统的光依赖性激活替代方案1:蛋白质募集到细胞内区室替代方案2:细胞器膜拴系的诱导替代方案3:蛋白质功能的光遗传学重建基本方案4:图像分析支持方案3:表观开启和关闭动力学分析支持方案4:细胞器重叠随时间变化的分析。