Suppr超能文献

采用阴离子膜和阳离子膜的双室燃料电池,以 NaHCO3 作为阳极电解液,HCl 或 NaCl 作为阴极电解液进行砷处理和发电。

Arsenic treatment and power generation with a dual-chambered fuel cell with anionic and cationic membranes using NaHCO anolyte and HCl or NaCl catholyte.

机构信息

Department of Civil and Environmental Engineering, Hanyang University, 17 Haengdang-Dong, Seongdong-Gu, Seoul, 133-791, Republic of Korea.

Department of Civil and Environmental Engineering, Hanyang University, 17 Haengdang-Dong, Seongdong-Gu, Seoul, 133-791, Republic of Korea.

出版信息

Chemosphere. 2017 Apr;172:138-146. doi: 10.1016/j.chemosphere.2016.12.149. Epub 2016 Dec 30.

Abstract

Dual-chambered fuel cells with an iron anode and an air-carbon cathode separated by an ion exchange membranes have been used to treat arsenate during power production. To select an effective catholyte, the dual-chambered fuel cell consisted 90 mL of 0.1 M HCl or 0.5 M NaCl as the catholyte and 1 L of 0.1 M NaHCO as the anolyte at an initial pH 5. The 0.1 M HCl was an effective catholyte, with which 1 ppm arsenate in 1 L of anolyte was reduced to 5 ppb in 1 h, and the maximum power density was about 6.3 w/m with an anion exchange membrane fuel cell (AEM_FC) and 4.4 w/m with a cation exchange membrane fuel cell (CEM_FC). Therefore, 90 mL of 0.1 M HCl was used as a catholyte to treat 20 L of 0.1 M NaHCO anolyte containing 1 ppm arsenate at an initial pH of 5 or 7. The arsenate level at pH 5 decreased to less than 5 ppb in 4 h, and the maximum power density was 5.9 W/m and 4.7 W/m with AEM_FC and CEM_FC, respectively. When using 0.01 M NaHCO as the anolyte at pH 5, arsenate was reduced to less than 5 ppb in 8 and 24 h for AEC_FC and CEM_FC, respectively. However, when using an anolyte at pH 7, arsenate could not be effectively removed in 24 h. Therefore, when using carbonate as an anolyte, the solution should be adjusted to a weakly acidic pH in order to remove arsenate.

摘要

双室燃料电池采用铁阳极和空气-碳阴极,通过离子交换膜分离,用于在发电过程中处理砷酸盐。为了选择有效的阴极电解液,双室燃料电池由 90 毫升 0.1 M HCl 或 0.5 M NaCl 作为阴极电解液和 1 升 0.1 M NaHCO 3 作为阳极电解液组成,初始 pH 值为 5。0.1 M HCl 是一种有效的阴极电解液,用其在 1 小时内将 1 L 阳极电解液中的 1 ppm 砷酸盐还原至 5 ppb,最大功率密度约为 6.3 w/m,使用阴离子交换膜燃料电池(AEM_FC)和 4.4 w/m,使用阳离子交换膜燃料电池(CEM_FC)。因此,使用 0.1 M HCl 90 毫升作为阴极电解液,处理初始 pH 值为 5 或 7 的 20 L 含 1 ppm 砷酸盐的 0.1 M NaHCO 3 阳极电解液。pH 值为 5 时,砷酸盐在 4 小时内降至 5 ppb 以下,最大功率密度分别为 AEM_FC 和 CEM_FC 的 5.9 W/m 和 4.7 W/m。当使用 0.01 M NaHCO 3 作为 pH 值为 5 的阳极电解液时,AEC_FC 和 CEM_FC 分别在 8 和 24 小时内将砷酸盐还原至 5 ppb 以下。然而,当使用 pH 值为 7 的阳极电解液时,24 小时内无法有效去除砷酸盐。因此,当使用碳酸盐作为阳极电解液时,为了去除砷酸盐,溶液应调节至弱酸性 pH 值。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验