Key Laboratory of Chemical Sensing & Analysis in Universities of Shandong, University of Jinan, Jinan 250022, China.
Department of Emergency, Shandong Provincial Hospital Affiliated to Shandong University, Jinan 250021, China.
Biosens Bioelectron. 2017 May 15;91:456-464. doi: 10.1016/j.bios.2016.12.059. Epub 2016 Dec 30.
Herein, TiO nanopillars (NPs)/N-doped graphene quantum dots (N-GQDs)/g-CN QDs heterojunction efficiently suppressed the photogenerated charges recombination and improved photo-to-current conversion efficiency. The introduced N-GQDs and g-CN QDs could result in more effective separation of the photogenerated charges, and thus produce a further increase of the photocurrent. TiO NPs/N-GQDs/g-CN QDs were firstly applied as the photoactive materials for the fabrication of the biosensors, and the primers of pcDNA3-HBV were then adsorbed on the TiO NPs/N-GQDs/g-CN QDs modified electrode under the activation of EDC/NHS. With increase of the pcDNA3-HBV concentration, the photocurrent reduced once the double helix between the primers and pcDNA3-HBV formed. The developed photoelectrochemical (PEC) biosensor showed a sensitive response to pcDNA3-HBV in a linear range of 0.01 fmol/L to 20nmol/L with a detection limit of 0.005 fmol/L under the optimal conditions. The biosensor exhibited high sensitivity, good selectivity, good stability and reproducibility.
在此,TiO 纳米柱(NPs)/N 掺杂石墨烯量子点(N-GQDs)/g-CN QDs 异质结有效地抑制了光生电荷的复合,提高了光电转换效率。引入的 N-GQDs 和 g-CN QDs 可以导致光生电荷更有效地分离,从而进一步增加光电流。TiO NPs/N-GQDs/g-CN QDs 首先被用作制备生物传感器的光活性材料,然后在 EDC/NHS 的激活下,将 pcDNA3-HBV 的引物吸附在 TiO NPs/N-GQDs/g-CN QDs 修饰的电极上。随着 pcDNA3-HBV 浓度的增加,一旦引物和 pcDNA3-HBV 之间形成双链,光电流就会减少。在最佳条件下,所开发的光电化学(PEC)生物传感器对 pcDNA3-HBV 表现出灵敏的响应,在 0.01 fmol/L 至 20nmol/L 的线性范围内检测限为 0.005 fmol/L。该生物传感器具有高灵敏度、良好的选择性、良好的稳定性和重现性。