National Research Council Resident Research Associate at the United States Environmental Protection Agency , Ada , Oklahoma 74820 , United States.
Department of Civil, Architectural and Environmental Engineering , University of Texas at Austin , Austin , Texas 78712 , United States.
Environ Sci Technol. 2019 Jul 2;53(13):7265-7287. doi: 10.1021/acs.est.9b01453. Epub 2019 Jun 24.
Nanotechnology has unprecedentedly revolutionized human societies over the past decades and will continue to advance our broad societal goals in the coming decades. The research, development, and particularly the application of engineered nanomaterials have shifted the focus from "less efficient" single-component nanomaterials toward "superior-performance", next-generation multifunctional nanohybrids. Carbon nanomaterials (e.g., carbon nanotubes, graphene family nanomaterials, carbon dots, and graphitic carbon nitride) and metal/metal oxide nanoparticles (e.g., Ag, Au, CdS, CuO, MoS, TiO, and ZnO) combinations are the most commonly pursued nanohybrids (carbon-metal nanohybrids; CMNHs), which exhibit appealing properties and promising multifunctionalities for addressing multiple complex challenges faced by humanity at the critical energy-water-environment (EWE) nexus. In this frontier review, we first highlight the altered and newly emerging properties (e.g., electronic and optical attributes, particle size, shape, morphology, crystallinity, dimensionality, carbon/metal ratio, and hybridization mode) of CMNHs that are distinct from those of their parent component materials. We then illustrate how these important newly emerging properties and functions of CMNHs direct their performances at the EWE nexus including energy harvesting (e.g., HO splitting and CO conversion), water treatment (e.g., contaminant removal and membrane technology), and environmental sensing and in situ nanoremediation. This review concludes with identifications of critical knowledge gaps and future research directions for maximizing the benefits of next-generation multifunctional CMNHs at the EWE nexus and beyond.
在过去几十年中,纳米技术以前所未有的方式改变了人类社会,并将在未来几十年继续推进我们的广泛社会目标。对工程纳米材料的研究、开发,特别是应用,已经将重点从“效率较低”的单一成分纳米材料转移到“性能更优”的下一代多功能纳米杂化物。碳纳米材料(例如,碳纳米管、石墨烯家族纳米材料、碳点和石墨相氮化碳)和金属/金属氧化物纳米颗粒(例如,Ag、Au、CdS、CuO、MoS、TiO 和 ZnO)的组合是最常追求的纳米杂化物(碳-金属纳米杂化物;CMNHs),它们表现出吸引人的性质和有前途的多功能性,可用于解决人类在关键能源-水-环境(EWE)交点面临的多个复杂挑战。在这篇前沿综述中,我们首先强调了 CMNHs 的改变和新出现的性质(例如,电子和光学属性、颗粒大小、形状、形态、结晶度、维度、碳/金属比和杂化模式)与它们的母体成分材料的性质明显不同。然后,我们说明了这些 CMNHs 的重要新出现的性质和功能如何指导它们在 EWE 交点处的性能,包括能源收集(例如,HO 分裂和 CO 转化)、水处理(例如,污染物去除和膜技术)以及环境传感和原位纳米修复。本综述最后确定了关键的知识差距和未来的研究方向,以最大限度地发挥下一代多功能 CMNHs 在 EWE 交点及其他领域的优势。