Suppr超能文献

使用AgileFD的自动相位映射及其在V-Mn-Nb氧化物体系中光吸收体发现中的应用。

Automated Phase Mapping with AgileFD and its Application to Light Absorber Discovery in the V-Mn-Nb Oxide System.

作者信息

Suram Santosh K, Xue Yexiang, Bai Junwen, Le Bras Ronan, Rappazzo Brendan, Bernstein Richard, Bjorck Johan, Zhou Lan, van Dover R Bruce, Gomes Carla P, Gregoire John M

机构信息

Joint Center for Artificial Photosynthesis, California Institute of Technology , Pasadena California 91125, United States.

Department of Computer Science, Cornell University , Ithaca, New York 14850, United States.

出版信息

ACS Comb Sci. 2017 Jan 9;19(1):37-46. doi: 10.1021/acscombsci.6b00153. Epub 2016 Dec 7.

Abstract

Rapid construction of phase diagrams is a central tenet of combinatorial materials science with accelerated materials discovery efforts often hampered by challenges in interpreting combinatorial X-ray diffraction data sets, which we address by developing AgileFD, an artificial intelligence algorithm that enables rapid phase mapping from a combinatorial library of X-ray diffraction patterns. AgileFD models alloying-based peak shifting through a novel expansion of convolutional nonnegative matrix factorization, which not only improves the identification of constituent phases but also maps their concentration and lattice parameter as a function of composition. By incorporating Gibbs' phase rule into the algorithm, physically meaningful phase maps are obtained with unsupervised operation, and more refined solutions are attained by injecting expert knowledge of the system. The algorithm is demonstrated through investigation of the V-Mn-Nb oxide system where decomposition of eight oxide phases, including two with substantial alloying, provides the first phase map for this pseudoternary system. This phase map enables interpretation of high-throughput band gap data, leading to the discovery of new solar light absorbers and the alloying-based tuning of the direct-allowed band gap energy of MnVO. The open-source family of AgileFD algorithms can be implemented into a broad range of high throughput workflows to accelerate materials discovery.

摘要

相图的快速构建是组合材料科学的核心原则,加速材料发现的努力常常因解释组合X射线衍射数据集时面临的挑战而受阻。我们通过开发AgileFD来解决这一问题,AgileFD是一种人工智能算法,能够从X射线衍射图案的组合库中快速进行相映射。AgileFD通过对卷积非负矩阵分解的新颖扩展来模拟基于合金化的峰位移,这不仅改善了组成相的识别,还能将其浓度和晶格参数映射为成分的函数。通过将吉布斯相律纳入算法,在无监督操作下获得了具有物理意义的相图,并通过注入系统的专家知识得到了更精确的解决方案。通过对V-Mn-Nb氧化物系统的研究展示了该算法,其中八个氧化物相的分解,包括两个具有大量合金化的相,为这个伪三元系统提供了首张相图。该相图能够解释高通量带隙数据,从而发现新的太阳光吸收剂,并基于合金化对MnVO的直接允许带隙能量进行调节。AgileFD算法的开源系列可应用于广泛的高通量工作流程中,以加速材料发现。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验