Suppr超能文献

材料科学中的科学人工智能:通往可持续和可扩展范式之路。

Scientific AI in Materials Science: a Path to a Sustainable and Scalable Paradigm.

作者信息

DeCost B L, Hattrick-Simpers J R, Trautt Z, Kusne A G, Campo E, Green M L

机构信息

National Institute of Standards and Technology, Gaithersburg, MD, USA.

National Science Foundation, Arlington, VA, USA.

出版信息

Mach Learn Sci Technol. 2020;1(3). doi: 10.1088/2632-2153/ab9a20.

Abstract

Recently there has been an ever-increasing trend in the use of machine learning (ML) and artificial intelligence (AI) methods by the materials science, condensed matter physics, and chemistry communities. This perspective article identifies key scientific, technical, and social opportunities that the materials community must prioritize to consistently develop and leverage Scientific AI (SciAI) to provide a credible path towards the advancement of current materials-limited technologies. Here we highlight the intersections of these opportunities with a series of proposed paths forward. The opportunities are roughly sorted from scientific/technical ( development of robust, physically meaningful multiscale material representations) to social ( promoting an AI-ready workforce). The proposed paths forward range from developing new infrastructure and capabilities to deploying them in industry and academia. We provide a brief introduction to AI in materials science and engineering, followed by detailed discussions of each of the opportunities and paths forward.

摘要

最近,材料科学、凝聚态物理和化学领域使用机器学习(ML)和人工智能(AI)方法的趋势一直在不断增加。这篇观点文章确定了材料领域必须优先考虑的关键科学、技术和社会机遇,以便持续开发和利用科学人工智能(SciAI),为推动当前受材料限制的技术发展提供一条可靠的途径。在这里,我们突出这些机遇与一系列提议的前进道路的交叉点。这些机遇大致从科学/技术(开发强大的、具有物理意义的多尺度材料表示)到社会(培养适应人工智能的劳动力)进行排序。提议的前进道路包括从开发新的基础设施和能力到在工业界和学术界进行部署。我们首先简要介绍材料科学与工程中的人工智能,随后详细讨论每个机遇和前进道路。

相似文献

2
Artificial intelligence: A powerful paradigm for scientific research.人工智能:科学研究的强大范式。
Innovation (Camb). 2021 Oct 28;2(4):100179. doi: 10.1016/j.xinn.2021.100179. eCollection 2021 Nov 28.
4
Artificial Intelligence-Powered Materials Science.人工智能驱动的材料科学
Nanomicro Lett. 2025 Feb 6;17(1):135. doi: 10.1007/s40820-024-01634-8.
6
Making Waves: Towards data-centric water engineering.掀起浪潮:迈向以数据为中心的水利工程。
Water Res. 2024 Jun 1;256:121585. doi: 10.1016/j.watres.2024.121585. Epub 2024 Apr 8.

引用本文的文献

6
Data-Driven Methods for Accelerating Polymer Design.加速聚合物设计的数据驱动方法。
ACS Polym Au. 2021 Dec 28;2(1):8-26. doi: 10.1021/acspolymersau.1c00035. eCollection 2022 Feb 9.
7
Leveraging Theory for Enhanced Machine Learning.利用理论增强机器学习。
ACS Macro Lett. 2022 Sep 20;11(9):1117-1122. doi: 10.1021/acsmacrolett.2c00369. Epub 2022 Aug 26.
8
The materials tetrahedron has a "digital twin".材料四面体有一个“数字孪生体”。
MRS Bull. 2022;47(4):379-388. doi: 10.1557/s43577-021-00214-0. Epub 2022 Feb 1.

本文引用的文献

1
Improving Reproducibility in Research: The Role of Measurement Science.提高研究的可重复性:测量科学的作用。
J Res Natl Inst Stand Technol. 2019 Sep 18;124:1-13. doi: 10.6028/jres.124.024. eCollection 2019.
2
5
Three pitfalls to avoid in machine learning.机器学习中需避免的三个陷阱。
Nature. 2019 Aug;572(7767):27-29. doi: 10.1038/d41586-019-02307-y.
6
Completing the picture through correlative characterization.通过相关性特征分析来完善图像。
Nat Mater. 2019 Oct;18(10):1041-1049. doi: 10.1038/s41563-019-0402-8. Epub 2019 Jun 17.
8
In defense of the black box.为黑匣子辩护。
Science. 2019 Apr 5;364(6435):26-27. doi: 10.1126/science.aax0162.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验