Suppr超能文献

相似文献

1
Scientific AI in Materials Science: a Path to a Sustainable and Scalable Paradigm.
Mach Learn Sci Technol. 2020;1(3). doi: 10.1088/2632-2153/ab9a20.
2
Artificial intelligence: A powerful paradigm for scientific research.
Innovation (Camb). 2021 Oct 28;2(4):100179. doi: 10.1016/j.xinn.2021.100179. eCollection 2021 Nov 28.
4
Artificial Intelligence-Powered Materials Science.
Nanomicro Lett. 2025 Feb 6;17(1):135. doi: 10.1007/s40820-024-01634-8.
5
AI in Biomedicine-A Forward-Looking Perspective on Health Equity.
Int J Environ Res Public Health. 2024 Dec 10;21(12):1642. doi: 10.3390/ijerph21121642.
6
Making Waves: Towards data-centric water engineering.
Water Res. 2024 Jun 1;256:121585. doi: 10.1016/j.watres.2024.121585. Epub 2024 Apr 8.
9
Governing artificial intelligence: ethical, legal and technical opportunities and challenges.
Philos Trans A Math Phys Eng Sci. 2018 Oct 15;376(2133):20180080. doi: 10.1098/rsta.2018.0080.

引用本文的文献

1
Automated image segmentation for accelerated nanoparticle characterization.
Sci Rep. 2025 May 17;15(1):17180. doi: 10.1038/s41598-025-01337-z.
3
Research integrity in the era of artificial intelligence: Challenges and responses.
Medicine (Baltimore). 2024 Jul 5;103(27):e38811. doi: 10.1097/MD.0000000000038811.
4
Algorithm-Based Linearly Graded Compositions of GeSn on GaAs (001) via Molecular Beam Epitaxy.
Nanomaterials (Basel). 2024 May 22;14(11):909. doi: 10.3390/nano14110909.
5
Exploiting redundancy in large materials datasets for efficient machine learning with less data.
Nat Commun. 2023 Nov 10;14(1):7283. doi: 10.1038/s41467-023-42992-y.
6
Data-Driven Methods for Accelerating Polymer Design.
ACS Polym Au. 2021 Dec 28;2(1):8-26. doi: 10.1021/acspolymersau.1c00035. eCollection 2022 Feb 9.
7
Leveraging Theory for Enhanced Machine Learning.
ACS Macro Lett. 2022 Sep 20;11(9):1117-1122. doi: 10.1021/acsmacrolett.2c00369. Epub 2022 Aug 26.
8
The materials tetrahedron has a "digital twin".
MRS Bull. 2022;47(4):379-388. doi: 10.1557/s43577-021-00214-0. Epub 2022 Feb 1.
9
An end-to-end computer vision methodology for quantitative metallography.
Sci Rep. 2022 Mar 21;12(1):4776. doi: 10.1038/s41598-022-08651-w.
10
Data-Centric Architecture for Self-Driving Laboratories with Autonomous Discovery of New Nanomaterials.
Nanomaterials (Basel). 2021 Dec 21;12(1):12. doi: 10.3390/nano12010012.

本文引用的文献

1
Improving Reproducibility in Research: The Role of Measurement Science.
J Res Natl Inst Stand Technol. 2019 Sep 18;124:1-13. doi: 10.6028/jres.124.024. eCollection 2019.
2
A Bayesian experimental autonomous researcher for mechanical design.
Sci Adv. 2020 Apr 10;6(15):eaaz1708. doi: 10.1126/sciadv.aaz1708. eCollection 2020 Apr.
3
Improved protein structure prediction using potentials from deep learning.
Nature. 2020 Jan;577(7792):706-710. doi: 10.1038/s41586-019-1923-7. Epub 2020 Jan 15.
4
Anthropogenic biases in chemical reaction data hinder exploratory inorganic synthesis.
Nature. 2019 Sep;573(7773):251-255. doi: 10.1038/s41586-019-1540-5. Epub 2019 Sep 11.
5
Three pitfalls to avoid in machine learning.
Nature. 2019 Aug;572(7767):27-29. doi: 10.1038/d41586-019-02307-y.
6
Completing the picture through correlative characterization.
Nat Mater. 2019 Oct;18(10):1041-1049. doi: 10.1038/s41563-019-0402-8. Epub 2019 Jun 17.
7
Physically informed artificial neural networks for atomistic modeling of materials.
Nat Commun. 2019 May 28;10(1):2339. doi: 10.1038/s41467-019-10343-5.
8
In defense of the black box.
Science. 2019 Apr 5;364(6435):26-27. doi: 10.1126/science.aax0162.
9
Inverse molecular design using machine learning: Generative models for matter engineering.
Science. 2018 Jul 27;361(6400):360-365. doi: 10.1126/science.aat2663. Epub 2018 Jul 26.
10
Accelerated discovery of metallic glasses through iteration of machine learning and high-throughput experiments.
Sci Adv. 2018 Apr 13;4(4):eaaq1566. doi: 10.1126/sciadv.aaq1566. eCollection 2018 Apr.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验