Suppr超能文献

人工智能时代的材料科学:高通量库生成、机器学习以及从相关性到基础物理学的路径。

Materials Science in the AI age: high-throughput library generation, machine learning and a pathway from correlations to the underpinning physics.

作者信息

Vasudevan Rama K, Choudhary Kamal, Mehta Apurva, Smith Ryan, Kusne Gilad, Tavazza Francesca, Vlcek Lukas, Ziatdinov Maxim, Kalinin Sergei V, Hattrick-Simpers Jason

机构信息

Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge TN 37831, USA.

Material Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, MD 20899.

出版信息

MRS Commun. 2019;9(3). doi: 10.1557/mrc.2019.95.

Abstract

The use of advanced data analytics and applications of statistical and machine learning approaches ('AI') to materials science is experiencing explosive growth recently. In this prospective, we review recent work focusing on generation and application of libraries from both experiment and theoretical tools, across length scales. The available library data both enables classical correlative machine learning, and also opens the pathway for exploration of underlying causative physical behaviors. We highlight the key advances facilitated by this approach, and illustrate how modeling, macroscopic experiments and atomic-scale imaging can be combined to dramatically accelerate understanding and development of new material systems via a statistical physics framework. These developments point towards a data driven future wherein knowledge can be aggregated and used collectively, accelerating the advancement of materials science.

摘要

先进的数据分析以及统计和机器学习方法(“人工智能”)在材料科学中的应用近来正经历着爆炸式增长。从这个角度来看,我们回顾了近期的工作,这些工作聚焦于跨长度尺度从实验和理论工具生成库并应用这些库。可用的库数据既支持经典的关联机器学习,也为探索潜在的因果物理行为开辟了道路。我们强调了这种方法带来的关键进展,并说明了如何通过统计物理框架将建模、宏观实验和原子尺度成像结合起来,以显著加速对新型材料系统的理解和开发。这些进展指向一个数据驱动的未来,在这个未来中,知识可以被汇总并共同使用,从而加速材料科学的进步。

相似文献

5
Data-Driven Strategies for Accelerated Materials Design.数据驱动的材料设计加速策略。
Acc Chem Res. 2021 Feb 16;54(4):849-860. doi: 10.1021/acs.accounts.0c00785. Epub 2021 Feb 2.
8
Artificial intelligence to bring nanomedicine to life.人工智能让纳米医学成为现实。
Adv Drug Deliv Rev. 2022 May;184:114194. doi: 10.1016/j.addr.2022.114194. Epub 2022 Mar 10.
10
A primer on applying AI synergistically with domain expertise to oncology.人工智能与肿瘤学领域专业知识协同应用基础指南。
Biochim Biophys Acta Rev Cancer. 2021 Aug;1876(1):188548. doi: 10.1016/j.bbcan.2021.188548. Epub 2021 Apr 24.

引用本文的文献

5
Modeling High Energy Molecules and Screening to Find Novel High Energy Candidates.高能分子建模与筛选以寻找新型高能候选物。
ACS Omega. 2024 Oct 11;9(42):42709-42720. doi: 10.1021/acsomega.4c01070. eCollection 2024 Oct 22.
8
Applying machine learning to assess the morphology of sculpted teeth.应用机器学习评估雕刻牙齿的形态。
J Dent Sci. 2024 Jan;19(1):542-549. doi: 10.1016/j.jds.2023.09.023. Epub 2023 Oct 5.

本文引用的文献

1
ChemOS: Orchestrating autonomous experimentation.ChemOS:编排自主实验。
Sci Robot. 2018 Jun 20;3(19). doi: 10.1126/scirobotics.aat5559.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验