Mallette Matthew M, Hodges Gary J, McGarr Gregory W, Gabriel David A, Cheung Stephen S
Environmental Ergonomics Laboratory, Department of Kinesiology, Brock University, St. Catharines, Canada.
Electromyographic Kinesiology Laboratory, Department of Kinesiology, Brock University, St. Catharines, Canada.
Microvasc Res. 2017 May;111:42-48. doi: 10.1016/j.mvr.2016.12.010. Epub 2017 Jan 5.
Previous work has demonstrated that spectral analysis is a useful tool to non-invasively ascertain the mechanisms of control of the cutaneous circulation. The majority of work using spectral analysis has focused on local control mechanisms, with none examining reflex control. Skin blood flow was analysed using spectral analysis on the dorsal aspect of the forearm of 7 males and 7 females during passive heat stress, with mean forearm and local temperature at the site of measurement maintained at thermoneutral (33°C) to minimize the effect of local control mechanisms. Participants were passively heated to ~1.2±0.1°C above baseline rectal temperature (d=4.0, P<0.001) using a water-perfused, tube lined suit, with skin blood flow assessed using a laser-Doppler probe with an integrated temperature monitor. Spectral analysis was performed using a Morlet wavelet on the entire data set, with median power extracted during 20min of data during baseline (normothermia) and hyperthermia. Passive heat stress significantly increased laser-Doppler flux above baseline (d=4.7, P<0.001). Spectral power of the endothelial nitric oxide-independent (0.005-0.01Hz; d=1.1, P=0.004), neurogenic (0.2-0.05Hz; d=0.6, P=0.025), myogenic (0.05-0.15Hz; d=1.5, P=0.002), respiratory (0.15-0.4Hz; d=1.4 P=0.002), and cardiac (0.4-2.0Hz; d=1.1, P=0.012) frequency intervals increased with passive heat stress. In contrast, the endothelial nitric oxide-dependent frequency interval did not change (0.01-0.02Hz; d=0.3, P=0.09) with passive heat stress. These data suggest that cutaneous reflex vasodilatation is neurogenic in origin and not mediated by endothelial-nitric oxide synthase, and are congruent with invasive examinations of reflex cutaneous vasodilatation.
先前的研究表明,频谱分析是一种用于非侵入性确定皮肤循环控制机制的有用工具。大多数使用频谱分析的研究都集中在局部控制机制上,没有研究反射控制。在被动热应激期间,对7名男性和7名女性的前臂背侧进行频谱分析,以分析皮肤血流量,测量部位的平均前臂温度和局部温度保持在热中性(33°C),以尽量减少局部控制机制的影响。使用水灌注的管状内衬套装将参与者被动加热至比基线直肠温度高约1.2±0.1°C(效应量=4.0,P<0.001),使用带有集成温度监测器的激光多普勒探头评估皮肤血流量。对整个数据集使用Morlet小波进行频谱分析,在基线(正常体温)和高热期间的20分钟数据中提取中位数功率。被动热应激显著增加了激光多普勒通量,使其高于基线水平(效应量=4.7,P<0.001)。内皮型一氧化氮非依赖性(0.005 - 0.01Hz;效应量=1.1,P=0.004)、神经源性(0.2 - 0.05Hz;效应量=0.6,P=0.025)、肌源性(0.05 - 0.15Hz;效应量=1.5,P=0.002)、呼吸性(0.15 - 0.4Hz;效应量=1.4,P=0.002)和心脏性(0.4 - 2.0Hz;效应量=1.1,P=0.012)频率区间的频谱功率随被动热应激增加。相比之下,内皮型一氧化氮依赖性频率区间在被动热应激下没有变化(0.01 - 0.02Hz;效应量=0.3,P=0.09)。这些数据表明,皮肤反射性血管舒张起源于神经源性,而非由内皮型一氧化氮合酶介导,这与反射性皮肤血管舒张的侵入性检查结果一致。