Centro de Investigación Príncipe Felipe, 46012 Valencia, Spain; Center for Biomedical Network Research on Rare Diseases (CIBERER), 46012 Valencia, Spain.
Centro de Investigación Príncipe Felipe, 46012 Valencia, Spain.
Biochim Biophys Acta Mol Basis Dis. 2017 Mar;1863(3):801-809. doi: 10.1016/j.bbadis.2017.01.003. Epub 2017 Jan 6.
Charcot-Marie-Tooth disease is a rare peripheral neuropathy for which there is no specific treatment. Some forms of Charcot-Marie-Tooth are due to mutations in the GDAP1 gene. A striking feature of mutations in GDAP1 is that they have a variable clinical manifestation, according to disease onset and progression, histology and mode of inheritance. Studies in cellular and animal models have revealed a role of GDAP1 in mitochondrial morphology and distribution, calcium homeostasis and oxidative stress. To get a better understanding of the disease mechanism we have generated models of over-expression and RNA interference of the Drosophila Gdap1 gene. In order to get an overview about the changes that Gdap1 mutations cause in our disease model, we have combined a comprehensive determination of the metabolic profile in the flies by nuclear magnetic resonance spectroscopy with gene expression analyses and biophysical tests. Our results revealed that both up- and down-regulation of Gdap1 results in an early systemic inactivation of the insulin pathway before the onset of neuromuscular degeneration, followed by an accumulation of carbohydrates and an increase in the β-oxidation of lipids. Our findings are in line with emerging reports of energy metabolism impairments linked to different types of neural pathologies caused by defective mitochondrial function, which is not surprising given the central role of mitochondria in the control of energy metabolism. The relationship of mitochondrial dynamics with metabolism during neurodegeneration opens new avenues to understand the cause of the disease, and for the discovery of new biomarkers and treatments.
Charcot-Marie-Tooth 病是一种罕见的周围神经病变,目前尚无特定的治疗方法。有些类型的 Charcot-Marie-Tooth 病是由于 GDAP1 基因突变引起的。GDAP1 突变的一个显著特征是,根据疾病的发病和进展、组织学和遗传方式,其临床表现具有可变性。细胞和动物模型的研究揭示了 GDAP1 在线粒体形态和分布、钙稳态和氧化应激中的作用。为了更好地了解疾病机制,我们生成了果蝇 Gdap1 基因过表达和 RNA 干扰模型。为了全面了解 Gdap1 突变在我们疾病模型中引起的变化,我们将通过核磁共振波谱对果蝇的代谢谱进行全面测定与基因表达分析和生物物理测试相结合。我们的结果表明,GDAP1 的上调和下调都会导致神经肌肉退化前胰岛素通路的早期系统性失活,随后碳水化合物积累和脂质β氧化增加。我们的发现与线粒体功能缺陷导致的不同类型神经病变与能量代谢损伤之间的新兴报告一致,鉴于线粒体在能量代谢控制中的核心作用,这并不奇怪。神经退行性变过程中线粒体动力学与代谢之间的关系为了解疾病的原因以及发现新的生物标志物和治疗方法开辟了新的途径。