Edenharter Oliver, Schneuwly Stephan, Navarro Juan A
Department of Developmental Biology, Institute of Zoology, University of Regensburg, Regensburg, Germany.
Front Mol Neurosci. 2018 Mar 6;11:38. doi: 10.3389/fnmol.2018.00038. eCollection 2018.
Friedreich's ataxia (FRDA) is the most important recessive ataxia in the Caucasian population. It is caused by a deficit of the mitochondrial protein frataxin. Despite its pivotal effect on biosynthesis of iron-sulfur clusters and mitochondrial energy production, little is known about the influence of frataxin depletion on homeostasis of the cellular mitochondrial network. We have carried out a forward genetic screen to analyze genetic interactions between genes controlling mitochondrial homeostasis and frataxin. Our screen has identified silencing of () as a suppressor of FRDA phenotypes in glia. is known to play crucial roles in mitochondrial fusion, mitochondrial degradation and in the interface between mitochondria and endoplasmic reticulum (ER). Thus, we have analyzed the effects of frataxin knockdown on mitochondrial morphology, mitophagy and ER function in our fly FRDA model using different histological and molecular markers such as tetramethylrhodamine, ethyl ester (TMRE), mitochondria-targeted GFP (mitoGFP), p62, ATG8a, LAMP1, Xbp1 and BiP/GRP78. Furthermore, we have generated the first transgenic line containing the mtRosella construct under the UAS control to study the progression of the mitophagy process . Our results indicated that frataxin-deficiency had a small impact on mitochondrial morphology but enhanced mitochondrial clearance and altered the ER stress response in . Remarkably, we demonstrate that downregulation of suppresses ER stress in frataxin-deficient cells and this is sufficient to improve locomotor dysfunction, brain degeneration and lipid dyshomeostasis in our FRDA model. In agreement, chemical reduction of ER stress by means of two different compounds was sufficient to ameliorate the effects of frataxin deficiency in three different fly FRDA models. Altogether, our results strongly suggest that the protection mediated by knockdown in glia is mainly linked to its role in the mitochondrial-ER tethering and not to mitochondrial dynamics or mitochondrial degradation and that ER stress is a novel and pivotal player in the progression and etiology of FRDA. This work might define a new pathological mechanism in FRDA, linking mitochondrial dysfunction due to frataxin deficiency and mitofusin-mediated ER stress, which might be responsible for characteristic cellular features of the disease and also suggests ER stress as a therapeutic target.
弗里德赖希共济失调(FRDA)是白种人群中最重要的隐性共济失调。它由线粒体蛋白铁调素缺乏引起。尽管铁调素对铁硫簇生物合成和线粒体能量产生具有关键作用,但关于铁调素缺失对细胞线粒体网络稳态的影响却知之甚少。我们进行了一项正向遗传筛选,以分析控制线粒体稳态的基因与铁调素之间的遗传相互作用。我们的筛选确定了()基因的沉默作为神经胶质细胞中FRDA表型的抑制因子。已知该基因在线粒体融合、线粒体降解以及线粒体与内质网(ER)的界面中起关键作用。因此,我们在果蝇FRDA模型中,使用不同的组织学和分子标记,如四甲基罗丹明乙酯(TMRE)、线粒体靶向绿色荧光蛋白(mitoGFP)、p62、ATG8a、LAMP1、Xbp1和BiP/GRP78,分析了铁调素敲低对线粒体形态、线粒体自噬和内质网功能的影响。此外,我们构建了首个在UAS控制下含有mtRosella构建体的转基因品系,以研究线粒体自噬过程的进展。我们的结果表明,铁调素缺乏对线粒体形态影响较小,但增强了线粒体清除并改变了神经胶质细胞中的内质网应激反应。值得注意的是,我们证明该基因的下调可抑制铁调素缺乏细胞中的内质网应激,这足以改善我们FRDA模型中的运动功能障碍、脑退化和脂质稳态失衡。同样,通过两种不同化合物化学降低内质网应激足以改善三种不同果蝇FRDA模型中铁调素缺乏的影响。总之,我们的结果强烈表明,神经胶质细胞中该基因敲低介导的保护作用主要与其在线粒体 - 内质网连接中的作用有关,而不是与线粒体动力学或线粒体降解有关,并且内质网应激是FRDA进展和病因中的一个新的关键因素。这项工作可能定义了FRDA中的一种新的病理机制,将铁调素缺乏导致的线粒体功能障碍与线粒体融合蛋白介导的内质网应激联系起来,这可能是该疾病特征性细胞特征的原因,也提示内质网应激作为一个治疗靶点。