Suppr超能文献

在弗里德赖希共济失调模型中,线粒体融合蛋白依赖性内质网应激引发神经胶质细胞功能障碍和神经系统退化。

Mitofusin-Dependent ER Stress Triggers Glial Dysfunction and Nervous System Degeneration in a Model of Friedreich's Ataxia.

作者信息

Edenharter Oliver, Schneuwly Stephan, Navarro Juan A

机构信息

Department of Developmental Biology, Institute of Zoology, University of Regensburg, Regensburg, Germany.

出版信息

Front Mol Neurosci. 2018 Mar 6;11:38. doi: 10.3389/fnmol.2018.00038. eCollection 2018.

Abstract

Friedreich's ataxia (FRDA) is the most important recessive ataxia in the Caucasian population. It is caused by a deficit of the mitochondrial protein frataxin. Despite its pivotal effect on biosynthesis of iron-sulfur clusters and mitochondrial energy production, little is known about the influence of frataxin depletion on homeostasis of the cellular mitochondrial network. We have carried out a forward genetic screen to analyze genetic interactions between genes controlling mitochondrial homeostasis and frataxin. Our screen has identified silencing of () as a suppressor of FRDA phenotypes in glia. is known to play crucial roles in mitochondrial fusion, mitochondrial degradation and in the interface between mitochondria and endoplasmic reticulum (ER). Thus, we have analyzed the effects of frataxin knockdown on mitochondrial morphology, mitophagy and ER function in our fly FRDA model using different histological and molecular markers such as tetramethylrhodamine, ethyl ester (TMRE), mitochondria-targeted GFP (mitoGFP), p62, ATG8a, LAMP1, Xbp1 and BiP/GRP78. Furthermore, we have generated the first transgenic line containing the mtRosella construct under the UAS control to study the progression of the mitophagy process . Our results indicated that frataxin-deficiency had a small impact on mitochondrial morphology but enhanced mitochondrial clearance and altered the ER stress response in . Remarkably, we demonstrate that downregulation of suppresses ER stress in frataxin-deficient cells and this is sufficient to improve locomotor dysfunction, brain degeneration and lipid dyshomeostasis in our FRDA model. In agreement, chemical reduction of ER stress by means of two different compounds was sufficient to ameliorate the effects of frataxin deficiency in three different fly FRDA models. Altogether, our results strongly suggest that the protection mediated by knockdown in glia is mainly linked to its role in the mitochondrial-ER tethering and not to mitochondrial dynamics or mitochondrial degradation and that ER stress is a novel and pivotal player in the progression and etiology of FRDA. This work might define a new pathological mechanism in FRDA, linking mitochondrial dysfunction due to frataxin deficiency and mitofusin-mediated ER stress, which might be responsible for characteristic cellular features of the disease and also suggests ER stress as a therapeutic target.

摘要

弗里德赖希共济失调(FRDA)是白种人群中最重要的隐性共济失调。它由线粒体蛋白铁调素缺乏引起。尽管铁调素对铁硫簇生物合成和线粒体能量产生具有关键作用,但关于铁调素缺失对细胞线粒体网络稳态的影响却知之甚少。我们进行了一项正向遗传筛选,以分析控制线粒体稳态的基因与铁调素之间的遗传相互作用。我们的筛选确定了()基因的沉默作为神经胶质细胞中FRDA表型的抑制因子。已知该基因在线粒体融合、线粒体降解以及线粒体与内质网(ER)的界面中起关键作用。因此,我们在果蝇FRDA模型中,使用不同的组织学和分子标记,如四甲基罗丹明乙酯(TMRE)、线粒体靶向绿色荧光蛋白(mitoGFP)、p62、ATG8a、LAMP1、Xbp1和BiP/GRP78,分析了铁调素敲低对线粒体形态、线粒体自噬和内质网功能的影响。此外,我们构建了首个在UAS控制下含有mtRosella构建体的转基因品系,以研究线粒体自噬过程的进展。我们的结果表明,铁调素缺乏对线粒体形态影响较小,但增强了线粒体清除并改变了神经胶质细胞中的内质网应激反应。值得注意的是,我们证明该基因的下调可抑制铁调素缺乏细胞中的内质网应激,这足以改善我们FRDA模型中的运动功能障碍、脑退化和脂质稳态失衡。同样,通过两种不同化合物化学降低内质网应激足以改善三种不同果蝇FRDA模型中铁调素缺乏的影响。总之,我们的结果强烈表明,神经胶质细胞中该基因敲低介导的保护作用主要与其在线粒体 - 内质网连接中的作用有关,而不是与线粒体动力学或线粒体降解有关,并且内质网应激是FRDA进展和病因中的一个新的关键因素。这项工作可能定义了FRDA中的一种新的病理机制,将铁调素缺乏导致的线粒体功能障碍与线粒体融合蛋白介导的内质网应激联系起来,这可能是该疾病特征性细胞特征的原因,也提示内质网应激作为一个治疗靶点。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f2ee/5845754/33e6aa2a3a11/fnmol-11-00038-g0001.jpg

相似文献

1
Mitofusin-Dependent ER Stress Triggers Glial Dysfunction and Nervous System Degeneration in a Model of Friedreich's Ataxia.
Front Mol Neurosci. 2018 Mar 6;11:38. doi: 10.3389/fnmol.2018.00038. eCollection 2018.
2
Overexpression of Drosophila frataxin triggers cell death in an iron-dependent manner.
J Neurogenet. 2017 Dec;31(4):189-202. doi: 10.1080/01677063.2017.1363200. Epub 2017 Aug 24.
4
Altered lipid metabolism in a Drosophila model of Friedreich's ataxia.
Hum Mol Genet. 2010 Jul 15;19(14):2828-40. doi: 10.1093/hmg/ddq183. Epub 2010 May 10.
5
PPAR gamma agonist leriglitazone improves frataxin-loss impairments in cellular and animal models of Friedreich Ataxia.
Neurobiol Dis. 2021 Jan;148:105162. doi: 10.1016/j.nbd.2020.105162. Epub 2020 Nov 7.
6
Mitoferrin modulates iron toxicity in a Drosophila model of Friedreich's ataxia.
Free Radic Biol Med. 2015 Aug;85:71-82. doi: 10.1016/j.freeradbiomed.2015.03.014. Epub 2015 Apr 2.
7
The Role of Iron in Friedreich's Ataxia: Insights From Studies in Human Tissues and Cellular and Animal Models.
Front Neurosci. 2019 Feb 18;13:75. doi: 10.3389/fnins.2019.00075. eCollection 2019.
9
Methylene blue rescues heart defects in a Drosophila model of Friedreich's ataxia.
Hum Mol Genet. 2014 Feb 15;23(4):968-79. doi: 10.1093/hmg/ddt493. Epub 2013 Oct 8.

引用本文的文献

1
Impacts of mitochondrial dysfunction on axonal microtubule bundles as a potential mechanism of neurodegeneration.
Front Neurosci. 2025 Aug 19;19:1631752. doi: 10.3389/fnins.2025.1631752. eCollection 2025.
2
αSnap plays a pivotal role in the maintenance of Drosophila ISCs survival and tissue homeostasis.
Sci Rep. 2025 May 30;15(1):18989. doi: 10.1038/s41598-025-03294-z.
3
Werner syndrome exonuclease promotes gut regeneration and causes age-associated gut hyperplasia in Drosophila.
PLoS Biol. 2025 Apr 22;23(4):e3003121. doi: 10.1371/journal.pbio.3003121. eCollection 2025 Apr.
4
Decoding Nucleotide Repeat Expansion Diseases: Novel Insights from Studies.
Int J Mol Sci. 2024 Nov 2;25(21):11794. doi: 10.3390/ijms252111794.
6
ROS-induced lipid peroxidation modulates cell death outcome: mechanisms behind apoptosis, autophagy, and ferroptosis.
Arch Toxicol. 2023 Jun;97(6):1439-1451. doi: 10.1007/s00204-023-03476-6. Epub 2023 May 2.
7
Multifaceted nanoparticles: emerging mechanisms and therapies in neurodegenerative diseases.
Brain. 2023 Jun 1;146(6):2227-2240. doi: 10.1093/brain/awad014.
8
The Potential of Small Molecules to Modulate the Mitochondria-Endoplasmic Reticulum Interplay in Alzheimer's Disease.
Front Cell Dev Biol. 2022 Aug 26;10:920228. doi: 10.3389/fcell.2022.920228. eCollection 2022.
9
Hyperactivation of mTOR and AKT in a cardiac hypertrophy animal model of Friedreich ataxia.
Heliyon. 2022 Aug 23;8(8):e10371. doi: 10.1016/j.heliyon.2022.e10371. eCollection 2022 Aug.

本文引用的文献

1
Mitochondrial pore opening and loss of Ca exchanger NCLX levels occur after frataxin depletion.
Biochim Biophys Acta Mol Basis Dis. 2018 Feb;1864(2):618-631. doi: 10.1016/j.bbadis.2017.12.005. Epub 2017 Dec 6.
2
Reversible Axonal Dystrophy by Calcium Modulation in Frataxin-Deficient Sensory Neurons of YG8R Mice.
Front Mol Neurosci. 2017 Aug 30;10:264. doi: 10.3389/fnmol.2017.00264. eCollection 2017.
3
Quantitative proteomic analysis of Parkin substrates in Drosophila neurons.
Mol Neurodegener. 2017 Apr 11;12(1):29. doi: 10.1186/s13024-017-0170-3.
4
The glia of the adult Drosophila nervous system.
Glia. 2017 Apr;65(4):606-638. doi: 10.1002/glia.23115. Epub 2017 Jan 30.
5
The endoplasmic reticulum-mitochondria coupling in health and disease: Molecules, functions and significance.
Cell Calcium. 2017 Mar;62:1-15. doi: 10.1016/j.ceca.2017.01.003. Epub 2017 Jan 12.
6
A Drosophila model of GDAP1 function reveals the involvement of insulin signalling in the mitochondria-dependent neuromuscular degeneration.
Biochim Biophys Acta Mol Basis Dis. 2017 Mar;1863(3):801-809. doi: 10.1016/j.bbadis.2017.01.003. Epub 2017 Jan 6.
7
Loss of Frataxin activates the iron/sphingolipid/PDK1/Mef2 pathway in mammals.
Elife. 2016 Nov 30;5:e20732. doi: 10.7554/eLife.20732.
8
A functional endosomal pathway is necessary for lysosome biogenesis in Drosophila.
BMC Cell Biol. 2016 Nov 16;17(1):36. doi: 10.1186/s12860-016-0115-7.
10
ER-Mitochondria contact sites: A new regulator of cellular calcium flux comes into play.
J Cell Biol. 2016 Aug 15;214(4):367-70. doi: 10.1083/jcb.201607124.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验