Miller Scot M, Miller Charles E, Commane Roisin, Chang Rachel Y-W, Dinardo Steven J, Henderson John M, Karion Anna, Lindaas Jakob, Melton Joe R, Miller John B, Sweeney Colm, Wofsy Steven C, Michalak Anna M
Department of Global Ecology, Carnegie Institution for Science, Stanford, California, USA.
Science Division, NASA Jet Propulsion Laboratory, Pasadena, California, USA.
Global Biogeochem Cycles. 2016 Oct;30(10):1441-1453. doi: 10.1002/2016GB005419. Epub 2016 Oct 9.
Methane (CH) fluxes from Alaska and other arctic regions may be sensitive to thawing permafrost and future climate change, but estimates of both current and future fluxes from the region are uncertain. This study estimates CH fluxes across Alaska for 2012-2014 using aircraft observations from the Carbon in Arctic Reservoirs Vulnerability Experiment (CARVE) and a geostatistical inverse model (GIM). We find that a simple flux model based on a daily soil temperature map and a static map of wetland extent reproduces the atmospheric CH observations at the state-wide, multi-year scale more effectively than global-scale, state-of-the-art process-based models. This result points to a simple and effective way of representing CH flux patterns across Alaska. It further suggests that contemporary process-based models can improve their representation of key processes that control fluxes at regional scales, and that more complex processes included in these models cannot be evaluated given the information content of available atmospheric CH observations. In addition, we find that CH emissions from the North Slope of Alaska account for 24% of the total statewide flux of 1.74 ± 0.44 Tg CHfor May-Oct.). Contemporary global-scale process models only attribute an average of 3% of the total flux to this region. This mismatch occurs for two reasons: process models likely underestimate wetland area in regions without visible surface water, and these models prematurely shut down CH fluxes at soil temperatures near 0°C. As a consequence, wetlands covered by vegetation and wetlands with persistently cold soils could be larger contributors to natural CH fluxes than in process estimates. Lastly, we find that the seasonality of CH fluxes varied during 2012-2014, but that total emissions did not differ significantly among years, despite substantial differences in soil temperature and precipitation; year-to-year variability in these environmental conditions did not affect obvious changes in total CH fluxes from the state.
来自阿拉斯加及其他北极地区的甲烷(CH)通量可能对永久冻土融化和未来气候变化敏感,但该地区当前和未来通量的估计都存在不确定性。本研究利用北极碳库脆弱性实验(CARVE)的飞机观测数据和地统计反演模型(GIM)估算了2012 - 2014年阿拉斯加的CH通量。我们发现,基于每日土壤温度图和湿地范围静态图的简单通量模型,在全州范围的多年尺度上比全球尺度的、最先进的基于过程的模型更有效地再现了大气CH观测结果。这一结果指出了一种表示阿拉斯加CH通量模式的简单有效方法。它进一步表明,当代基于过程的模型可以改进其对控制区域尺度通量的关键过程的表示,并且鉴于现有大气CH观测的信息内容,这些模型中包含的更复杂过程无法得到评估。此外,我们发现阿拉斯加北坡的CH排放在5月至10月全州总通量1.74±0.44 Tg CH中占24%。当代全球尺度的过程模型仅将总通量的平均3%归因于该地区。这种不匹配的出现有两个原因:过程模型可能低估了没有可见地表水区域的湿地面积,并且这些模型在土壤温度接近0°C时过早关闭了CH通量。因此,被植被覆盖的湿地和土壤持续寒冷的湿地可能比过程估计中对自然CH通量的贡献更大。最后,我们发现2012 - 2014年期间CH通量的季节性有所变化,但尽管土壤温度和降水量存在显著差异,各年份的总排放量并无显著差异;这些环境条件的年际变化并未影响该州CH总通量的明显变化。