Editas Medicine, 11 Hurley Street, Cambridge, Massachusetts 02141, USA.
Nat Commun. 2017 Jan 9;8:13905. doi: 10.1038/ncomms13905.
The CRISPR-Cas9 system provides a versatile toolkit for genome engineering that can introduce various DNA lesions at specific genomic locations. However, a better understanding of the nature of these lesions and the repair pathways engaged is critical to realizing the full potential of this technology. Here we characterize the different lesions arising from each Cas9 variant and the resulting repair pathway engagement. We demonstrate that the presence and polarity of the overhang structure is a critical determinant of double-strand break repair pathway choice. Similarly, single nicks deriving from different Cas9 variants differentially activate repair: D10A but not N863A-induced nicks are repaired by homologous recombination. Finally, we demonstrate that homologous recombination is required for repairing lesions using double-stranded, but not single-stranded DNA as a template. This detailed characterization of repair pathway choice in response to CRISPR-Cas9 enables a more deterministic approach for designing research and therapeutic genome engineering strategies.
CRISPR-Cas9 系统为基因组工程提供了一个通用的工具包,可以在特定的基因组位置引入各种 DNA 损伤。然而,更好地了解这些损伤的性质和参与的修复途径对于充分发挥这项技术的潜力至关重要。在这里,我们描述了每个 Cas9 变体产生的不同损伤类型以及由此引发的修复途径的参与情况。我们证明了突出端结构的存在和极性是双链断裂修复途径选择的关键决定因素。同样,不同 Cas9 变体产生的单链切口会以不同的方式激活修复:D10A 诱导的但不是 N863A 诱导的切口通过同源重组进行修复。最后,我们证明了同源重组是修复双链 DNA 模板而不是单链 DNA 模板损伤所必需的。对 CRISPR-Cas9 响应中修复途径选择的这种详细描述,为设计研究和治疗性基因组工程策略提供了一种更具确定性的方法。