Mikhlin Yuri, Nasluzov Vladimir, Romanchenko Alexander, Tomashevich Yevgeny, Shor Alexey, Félix Roberto
Institute of Chemistry and Chemical Technology of the Siberian Branch of the Russian Academy of Sciences, Akademgorodok, 50/24, Krasnoyarsk, 660036, Russia.
Renewable Energy, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Lise-Meitner-Campus, Hahn-Meitner-Platz 1, 14109 Berlin, Germany.
Phys Chem Chem Phys. 2017 Jan 25;19(4):2749-2759. doi: 10.1039/c6cp07598c.
The depletion of oxidized metal sulfide surfaces in metals due to the preferential release of cations is a common, but as yet poorly understood phenomenon. Herein, X-ray photoelectron spectroscopy using excitation energies from 1.25 keV to 6 keV, and Fe K- and S K-edge X-ray absorption near-edge spectra in total electron and partial fluorescence yield modes was employed to study natural chalcopyrite oxidized in air and etched in an acidic ferric sulfate solution. The metal-depleted undersurface formed was found to consist of a thin, 1-4 nm, outer layer containing polysulfide species, a layer with a pronounced deficiency of metals, mainly iron, and an abundant disulfide content but negligible polysulfide content (about 20 nm thick after the chemical etching), and a defective underlayer which extended down to about a hundred nm. DFT+U was used to simulate chalcopyrite with increasing numbers of removed Fe atoms. It was found that the structure with disulfide anion near double Fe vacancies, and the 'defective' structure comprising Cu in the position of Fe and Cu vacancy are most energetically favorable, especially when using a higher Hubbard-type parameter U, and have a large density of states at the Fermi level, whereas polysulfide anions are stable only near the surface. We propose a mechanism explaining the formation of the layered undersurface and 'passivation' of metal sulfides by (i) arrested decomposition of a nearly stoichiometric sulfide surface, and (ii) faster interfacial transfer and solid diffusion of cations towards the surface; (iii) stability limits for specific defect structures, promoting their expansion in depth rather than through compositional changes, excluding surface layers; (iv) decay of surface polysulfide layer yielding elemental sulfur.
由于阳离子的优先释放,金属中氧化金属硫化物表面的耗尽是一种常见但尚未得到充分理解的现象。在此,利用1.25 keV至6 keV的激发能进行X射线光电子能谱分析,并采用全电子和部分荧光产率模式下的Fe K边和S K边X射线吸收近边光谱,研究了在空气中氧化并在酸性硫酸铁溶液中蚀刻的天然黄铜矿。发现形成的贫金属下表面由一层薄的(1 - 4 nm)外层组成,该外层含有多硫化物物种;一层金属明显缺乏的层,主要是铁,且二硫化物含量丰富但多硫化物含量可忽略不计(化学蚀刻后约20 nm厚);以及一个向下延伸至约100 nm的缺陷底层。使用DFT + U来模拟随着去除的Fe原子数量增加的黄铜矿。发现双Fe空位附近有二硫阴离子的结构以及Fe位置为Cu且有Cu空位的“缺陷”结构在能量上最有利,特别是在使用较高的哈伯德型参数U时,并且在费米能级处有很大的态密度,而多硫化物阴离子仅在表面附近稳定。我们提出了一种机制来解释层状下表面的形成以及金属硫化物的“钝化”,该机制包括:(i)近乎化学计量的硫化物表面的分解停滞;(ii)阳离子向表面的更快界面转移和固体扩散;(iii)特定缺陷结构的稳定性极限,促进其在深度而非通过组成变化进行扩展,排除表面层;(iv)表面多硫化物层的衰变产生元素硫。