Suppr超能文献

基于纳电子量子隧穿的生物物理特征进行单核苷酸识别

Single Nucleobase Identification Using Biophysical Signatures from Nanoelectronic Quantum Tunneling.

机构信息

Department of Chemical and Biological Engineering, University of Colorado Boulder, 596 UCB, Boulder, CO, 80309, USA.

Renewable and Sustainable Energy Institute (RASEI), University of Colorado Boulder, SEEC 27 UCB Suite N321, Boulder, CO, 80309, USA.

出版信息

Small. 2017 Mar;13(11). doi: 10.1002/smll.201603033. Epub 2017 Jan 9.

Abstract

Nanoelectronic DNA sequencing can provide an important alternative to sequencing-by-synthesis by reducing sample preparation time, cost, and complexity as a high-throughput next-generation technique with accurate single-molecule identification. However, sample noise and signature overlap continue to prevent high-resolution and accurate sequencing results. Probing the molecular orbitals of chemically distinct DNA nucleobases offers a path for facile sequence identification, but molecular entropy (from nucleotide conformations) makes such identification difficult when relying only on the energies of lowest-unoccupied and highest-occupied molecular orbitals (LUMO and HOMO). Here, nine biophysical parameters are developed to better characterize molecular orbitals of individual nucleobases, intended for single-molecule DNA sequencing using quantum tunneling of charges. For this analysis, theoretical models for quantum tunneling are combined with transition voltage spectroscopy to obtain measurable parameters unique to the molecule within an electronic junction. Scanning tunneling spectroscopy is then used to measure these nine biophysical parameters for DNA nucleotides, and a modified machine learning algorithm identified nucleobases. The new parameters significantly improve base calling over merely using LUMO and HOMO frontier orbital energies. Furthermore, high accuracies for identifying DNA nucleobases were observed at different pH conditions. These results have significant implications for developing a robust and accurate high-throughput nanoelectronic DNA sequencing technique.

摘要

纳米电子 DNA 测序可以通过减少样品制备时间、成本和复杂性,作为一种高通量的下一代技术,提供对测序合成的重要替代方法,具有准确的单分子识别能力。然而,样品噪声和特征重叠仍然阻止了高分辨率和准确的测序结果。探测化学上不同的 DNA 碱基的分子轨道为易于序列识别提供了一条途径,但仅依赖于最低空和最高占据分子轨道(LUMO 和 HOMO)的能量,核苷酸构象的分子熵使得这种识别变得困难。在这里,开发了九个生物物理参数来更好地描述单个碱基的分子轨道,旨在使用电荷的量子隧穿进行单分子 DNA 测序。为此分析,将量子隧穿的理论模型与转换电压光谱学相结合,以获得电子结内分子特有的可测量参数。然后使用扫描隧道光谱法测量 DNA 核苷酸的这九个生物物理参数,并使用修改后的机器学习算法识别碱基。与仅使用 LUMO 和 HOMO 前沿轨道能量相比,新参数显著提高了碱基调用的准确性。此外,在不同的 pH 条件下观察到 DNA 碱基的高识别精度。这些结果对开发稳健且准确的高通量纳米电子 DNA 测序技术具有重要意义。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验