Smerlak Matteo, Youssef Ahmed
Perimeter Institute for Theoretical Physics, 31 Caroline St. N., Waterloo, Canada, ON N2L 2Y5.
LD - Research, Pappelallee 78/79, 10437 Berlin, Germany.
J Theor Biol. 2017 Mar 7;416:68-80. doi: 10.1016/j.jtbi.2017.01.005. Epub 2017 Jan 6.
Natural selection works on variation in fitness, but how should we measure "variation" to predict the rate of future evolution? Fisher's fundamental theorem of natural selection provides the short-run answer: the instantaneous rate of growth of a population's mean fitness is its variance in fitness. This identity captures an important feature of the evolutionary process, but, because it does not specify how the variance itself evolves in time, it cannot be used to predict evolutionary dynamics in the long run. In this paper we reconsider the problem of computing evolutionary trajectories from limited statistical information. We identify the feature of fitness distributions which controls their late-time evolution: their (suitably defined) tail indices. We show that the location, scale and shape of the fitness distribution can be predicted far into the future from the measurement of this tail index at some initial time. Unlike the "fitness waves" studied in the literature, this pattern encompasses both positive and negative selection and is not restricted to rapidly adapting populations. Our results are well supported by numerical simulations, both from the Wright-Fisher model and from a less structured genetic algorithm.
自然选择作用于适合度的变异,但我们应如何衡量“变异”以预测未来的进化速率呢?费希尔自然选择基本定理给出了短期答案:种群平均适合度的瞬时增长率就是其适合度的方差。这一恒等式抓住了进化过程的一个重要特征,但是,由于它没有具体说明方差本身如何随时间演变,所以从长远来看,它无法用于预测进化动态。在本文中,我们重新审视了从有限统计信息计算进化轨迹的问题。我们确定了控制适合度分布后期演变的特征:其(适当定义的)尾部指数。我们表明,通过在某个初始时刻对该尾部指数的测量,可以对适合度分布的位置、尺度和形状进行长远预测。与文献中研究的“适合度波”不同,这种模式既包括正选择也包括负选择,并且不限于快速适应的种群。我们的结果得到了数值模拟的有力支持,这些模拟既来自赖特 - 费希尔模型,也来自结构较少的遗传算法。