Division of Ecology and Evolution, Research School of Biology, The Australian National University, Canberra, ACT, Australia.
School of Biology, University of St Andrews, St Andrews Fife, UK.
J Hered. 2019 Jul 1;110(4):383-395. doi: 10.1093/jhered/esz018.
Additive genetic variance in relative fitness (σA2(w)) is arguably the most important evolutionary parameter in a population because, by Fisher's fundamental theorem of natural selection (FTNS; Fisher RA. 1930. The genetical theory of natural selection. 1st ed. Oxford: Clarendon Press), it represents the rate of adaptive evolution. However, to date, there are few estimates of σA2(w) in natural populations. Moreover, most of the available estimates rely on Gaussian assumptions inappropriate for fitness data, with unclear consequences. "Generalized linear animal models" (GLAMs) tend to be more appropriate for fitness data, but they estimate parameters on a transformed ("latent") scale that is not directly interpretable for inferences on the data scale. Here we exploit the latest theoretical developments to clarify how best to estimate quantitative genetic parameters for fitness. Specifically, we use computer simulations to confirm a recently developed analog of the FTNS in the case when expected fitness follows a log-normal distribution. In this situation, the additive genetic variance in absolute fitness on the latent log-scale (σA2(l)) equals (σA2(w)) on the data scale, which is the rate of adaptation within a generation. However, due to inheritance distortion, the change in mean relative fitness between generations exceeds σA2(l) and equals (exp(σA2(l))-1). We illustrate why the heritability of fitness is generally low and is not a good measure of the rate of adaptation. Finally, we explore how well the relevant parameters can be estimated by animal models, comparing Gaussian models with Poisson GLAMs. Our results illustrate 1) the correspondence between quantitative genetics and population dynamics encapsulated in the FTNS and its log-normal-analog and 2) the appropriate interpretation of GLAM parameter estimates.
加性遗传方差在相对适合度(σA2(w))中可以说是群体中最重要的进化参数,因为根据Fisher 的自然选择基本定理(FTNS;Fisher RA. 1930. The genetical theory of natural selection. 1st ed. Oxford: Clarendon Press),它代表了适应性进化的速度。然而,迄今为止,在自然种群中很少有σA2(w)的估计值。此外,大多数可用的估计值依赖于不适合适合度数据的高斯假设,其后果不清楚。“广义线性动物模型”(GLAMs)往往更适合适合度数据,但它们在经过转换(“潜在”)的尺度上估计参数,对于在数据尺度上进行推断来说,这些参数是不可直接解释的。在这里,我们利用最新的理论进展来澄清如何最好地估计适合度的数量遗传参数。具体来说,我们使用计算机模拟来确认在预期适合度遵循对数正态分布的情况下,最近开发的 FTNS 模拟。在这种情况下,潜在对数尺度上的绝对适合度的加性遗传方差(σA2(l))等于数据尺度上的相对适合度的加性遗传方差(σA2(w)),这是一代内的适应速度。然而,由于遗传失真,两代之间相对适合度的均值变化超过了σA2(l),等于(exp(σA2(l))-1)。我们说明了为什么适合度的遗传力通常较低,并且不是适应速度的良好衡量标准。最后,我们通过动物模型比较了高斯模型和泊松 GLAMs,探讨了相关参数的估计效果。我们的结果说明了 1)量化遗传学和种群动态之间的对应关系,这些关系被包含在 FTNS 及其对数正态模拟中,以及 2)GLAM 参数估计的适当解释。