Suppr超能文献

通过狭窄开口的扩散逃逸:对经典问题的新见解

Diffusive escape through a narrow opening: new insights into a classic problem.

作者信息

Grebenkov Denis S, Oshanin Gleb

机构信息

Laboratoire de Physique de la Matière Condensée, CNRS, Ecole Polytechnique, Université Paris Saclay, F-91128 Palaiseau Cedex, France.

Laboratoire de Physique Théorique de la Matière Condensée (UMR CNRS 7600), Sorbonne Universités, UPMC Univ Paris 6, F-75005, Paris, France.

出版信息

Phys Chem Chem Phys. 2017 Jan 25;19(4):2723-2739. doi: 10.1039/c6cp06102h.

Abstract

We study the mean first exit time (T) of a particle diffusing in a circular or a spherical micro-domain with an impenetrable confining boundary containing a small escape window (EW) of an angular size ε. Focusing on the effects of an energy/entropy barrier at the EW, and of the long-range interactions (LRIs) with the boundary on the diffusive search for the EW, we develop a self-consistent approximation to derive for T a general expression, akin to the celebrated Collins-Kimball relation in chemical kinetics and accounting for both rate-controlling factors in an explicit way. Our analysis reveals that the barrier-induced contribution to T is the dominant one in the limit ε → 0, implying that the narrow escape problem is not "diffusion-limited" but rather "barrier-limited". We present the small-ε expansion for T, in which the coefficients in front of the leading terms are expressed via some integrals and derivatives of the LRI potential. Considering a triangular-well potential as an example, we show that T is non-monotonic with respect to the extent of the attractive LRI, being minimal for the ones having an intermediate extent, neither too concentrated on the boundary nor penetrating too deeply into the bulk. Our analytical predictions are in good agreement with the numerical simulations.

摘要

我们研究了一个粒子在具有不可穿透边界的圆形或球形微域中扩散时的平均首次出射时间(T),该边界包含一个角尺寸为ε的小逃逸窗口(EW)。聚焦于EW处能量/熵垒的影响,以及与边界的长程相互作用(LRI)对扩散寻找EW的影响,我们发展了一种自洽近似来推导T的一般表达式,类似于化学动力学中著名的柯林斯 - 金博尔关系,并以明确的方式考虑了两个速率控制因素。我们的分析表明,在ε→0的极限情况下,势垒对T的贡献是主导的,这意味着窄逃逸问题不是“扩散受限”而是“势垒受限”。我们给出了T的小ε展开式,其中主导项前面的系数通过LRI势的一些积分和导数来表示。以三角阱势为例,我们表明T相对于吸引性LRI的范围是非单调的,对于具有中等范围的情况最小,既不过于集中在边界上也不过深地穿透到主体中。我们的分析预测与数值模拟结果吻合良好。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验