Mangeat Matthieu, Rieger Heiko
Center for Biophysics & Department for Theoretical Physics, Saarland University, D-66123 Saarbrücken, Germany.
Phys Rev E. 2021 Oct;104(4-1):044124. doi: 10.1103/PhysRevE.104.044124.
Intracellular transport in living cells is often spatially inhomogeneous with an accelerated effective diffusion close to the cell membrane and a ballistic motion away from the centrosome due to active transport along actin filaments and microtubules, respectively. Recently it was reported that the mean first passage time (MFPT) for transport to a specific area on the cell membrane is minimal for an optimal actin cortex width. In this paper, we ask whether this optimization in a two-compartment domain can also be achieved by passive Brownian particles. We consider a Brownian motion with different diffusion constants in the two shells and a potential barrier between the two, and we investigate the narrow escape problem by calculating the MFPT for Brownian particles to reach a small window on the external boundary. In two and three dimensions, we derive asymptotic expressions for the MFPT in the thin cortex and small escape region limits confirmed by numerical calculations of the MFPT using the finite-element method and stochastic simulations. From this analytical and numeric analysis, we finally extract the dependence of the MFPT on the ratio of diffusion constants, the potential barrier height, and the width of the outer shell. The first two are monotonous, whereas the last one may have a minimum for a sufficiently attractive cortex, for which we propose an analytical expression of the potential barrier height matching very well the numerical predictions.
活细胞中的细胞内运输通常在空间上是不均匀的,靠近细胞膜处有效扩散加速,而由于分别沿着肌动蛋白丝和微管的主动运输,远离中心体处则呈现弹道运动。最近有报道称,对于最佳的肌动蛋白皮质宽度,运输到细胞膜上特定区域的平均首次通过时间(MFPT)是最小的。在本文中,我们探讨在两室区域中的这种优化是否也能由被动布朗粒子实现。我们考虑在两个壳层中具有不同扩散常数且两者之间存在势垒的布朗运动,并通过计算布朗粒子到达外边界上一个小窗口的MFPT来研究窄逃逸问题。在二维和三维中,我们推导了在薄皮质和小逃逸区域极限下MFPT的渐近表达式,这些表达式通过使用有限元方法对MFPT进行数值计算以及随机模拟得到了证实。通过这种分析和数值分析,我们最终得出MFPT对扩散常数之比、势垒高度和外壳宽度的依赖性。前两者是单调的,而最后一个对于足够有吸引力的皮质可能存在最小值,为此我们提出了一个势垒高度的解析表达式,它与数值预测非常吻合。