Suppr超能文献

一种基于遗传距离的最近邻方法,用于将单株树木分配到地理起源地。

A nearest neighbour approach by genetic distance to the assignment of individual trees to geographic origin.

作者信息

Degen Bernd, Blanc-Jolivet Céline, Stierand Katrin, Gillet Elizabeth

机构信息

Thünen Institute of Forest Genetics, Sieker Landstrasse 2, Grosshansdorf, 22927, Germany.

Forest Genetics and Forest Tree Breeding, Faculty of Forest Sciences and Forest Ecology, Georg-August-University of Göttingen, Büsgenweg 2, 37077 Göttingen, Germany.

出版信息

Forensic Sci Int Genet. 2017 Mar;27:132-141. doi: 10.1016/j.fsigen.2016.12.011. Epub 2016 Dec 29.

Abstract

During the past decade, the use of DNA for forensic applications has been extensively implemented for plant and animal species, as well as in humans. Tracing back the geographical origin of an individual usually requires genetic assignment analysis. These approaches are based on reference samples that are grouped into populations or other aggregates and intend to identify the most likely group of origin. Often this grouping does not have a biological but rather a historical or political justification, such as "country of origin". In this paper, we present a new nearest neighbour approach to individual assignment or classification within a given but potentially imperfect grouping of reference samples. This method, which is based on the genetic distance between individuals, functions better in many cases than commonly used methods. We demonstrate the operation of our assignment method using two data sets. One set is simulated for a large number of trees distributed in a 120km by 120km landscape with individual genotypes at 150 SNPs, and the other set comprises experimental data of 1221 individuals of the African tropical tree species Entandrophragma cylindricum (Sapelli) genotyped at 61 SNPs. Judging by the level of correct self-assignment, our approach outperformed the commonly used frequency and Bayesian approaches by 15% for the simulated data set and by 5-7% for the Sapelli data set. Our new approach is less sensitive to overlapping sources of genetic differentiation, such as genetic differences among closely-related species, phylogeographic lineages and isolation by distance, and thus operates better even for suboptimal grouping of individuals.

摘要

在过去十年中,DNA在法医鉴定中的应用已广泛应用于动植物物种以及人类。追溯个体的地理起源通常需要进行基因归属分析。这些方法基于参考样本,这些样本被分组为种群或其他集合,并旨在识别最有可能的起源群体。通常,这种分组并没有生物学依据,而是基于历史或政治因素,例如“原产国”。在本文中,我们提出了一种新的最近邻方法,用于在给定但可能不完美的参考样本分组中进行个体归属或分类。这种基于个体间遗传距离的方法在许多情况下比常用方法表现更好。我们使用两个数据集展示了我们的归属方法的操作。一个数据集是针对分布在120公里×120公里区域内的大量树木进行模拟的,个体基因型有150个单核苷酸多态性(SNP),另一个数据集包含非洲热带树种Entandrophragma cylindricum(沙比利)的1221个个体的实验数据,这些个体在61个SNP上进行了基因分型。从正确自我归属的水平来看,我们的方法在模拟数据集上比常用的频率法和贝叶斯法高出15%,在沙比利数据集上高出5 - 7%。我们的新方法对遗传分化的重叠来源(如近缘物种间的遗传差异、系统发育谱系和距离隔离)不太敏感,因此即使对于个体的次优分组也能更好地运行。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验