Suppr超能文献

细胞质中视黄酸诱导基因I(RIG-I)与干扰素基因刺激蛋白(STING)传感通路之间的相互作用

Crosstalk between Cytoplasmic RIG-I and STING Sensing Pathways.

作者信息

Zevini Alessandra, Olagnier David, Hiscott John

机构信息

Istituto Pasteur - Italia, Istituto Pasteur - Fondazione Cenci Bolognetti, Rome, Italy.

Department of Biomedicine, Aarhus Research Center for Innate Immunology, Aarhus University, Denmark.

出版信息

Trends Immunol. 2017 Mar;38(3):194-205. doi: 10.1016/j.it.2016.12.004. Epub 2017 Jan 7.

Abstract

Detection of evolutionarily conserved molecules on microbial pathogens by host immune sensors represents the initial trigger of the immune response against infection. Cytosolic receptors sense viral and intracellular bacterial genomes, as well as nucleic acids produced during replication. Once activated, these sensors trigger multiple signaling cascades, converging on the production of type I interferons and proinflammatory cytokines. Although distinct classes of receptors are responsible for the RNA and DNA sensing, the downstream signaling components are physically and functionally interconnected. This review highlights the importance of the crosstalk between retinoic acid inducible gene-I (RIG-I)-mitochondrial antiviral-signaling protein (MAVS) RNA sensing and the cyclic GMP-AMP synthase (cGAS)- stimulator of interferon genes (STING) DNA sensing pathways in potentiating efficient antiviral responses. The potential of cGAS-STING manipulation as a component of cancer immunotherapy is also reviewed.

摘要

宿主免疫传感器检测微生物病原体上进化保守的分子是针对感染的免疫反应的初始触发因素。胞质受体可感知病毒和细胞内细菌基因组以及复制过程中产生的核酸。一旦激活,这些传感器会触发多个信号级联反应,最终导致I型干扰素和促炎细胞因子的产生。尽管不同类别的受体负责RNA和DNA传感,但下游信号成分在物理和功能上相互关联。本综述强调了视黄酸诱导基因-I(RIG-I)-线粒体抗病毒信号蛋白(MAVS)RNA传感与环磷酸鸟苷-腺苷酸合成酶(cGAS)-干扰素基因刺激物(STING)DNA传感途径之间的串扰在增强有效抗病毒反应中的重要性。还综述了cGAS-STING操纵作为癌症免疫疗法组成部分的潜力。

相似文献

1
Crosstalk between Cytoplasmic RIG-I and STING Sensing Pathways.
Trends Immunol. 2017 Mar;38(3):194-205. doi: 10.1016/j.it.2016.12.004. Epub 2017 Jan 7.
2
How Dengue Virus Circumvents Innate Immunity.
Front Immunol. 2018 Dec 4;9:2860. doi: 10.3389/fimmu.2018.02860. eCollection 2018.
4
Targeting Cytosolic Nucleic Acid-Sensing Pathways for Cancer Immunotherapies.
Front Immunol. 2018 Apr 9;9:711. doi: 10.3389/fimmu.2018.00711. eCollection 2018.
5
Endogenous Nucleic Acid Recognition by RIG-I-Like Receptors and cGAS.
J Interferon Cytokine Res. 2019 Aug;39(8):450-458. doi: 10.1089/jir.2019.0015. Epub 2019 May 7.
6
Regulation of cGAS- and RLR-mediated immunity to nucleic acids.
Nat Immunol. 2020 Jan;21(1):17-29. doi: 10.1038/s41590-019-0556-1. Epub 2019 Dec 9.
8
RIG-I-Mediated STING Upregulation Restricts Herpes Simplex Virus 1 Infection.
J Virol. 2016 Sep 29;90(20):9406-19. doi: 10.1128/JVI.00748-16. Print 2016 Oct 15.
9
Cyclic Guanosine Monophosphate-Adenosine Monophosphate Synthase (cGAS), a Multifaceted Platform of Intracellular DNA Sensing.
Front Immunol. 2021 Feb 23;12:637399. doi: 10.3389/fimmu.2021.637399. eCollection 2021.
10
Post-translational Control of Intracellular Pathogen Sensing Pathways.
Trends Immunol. 2017 Jan;38(1):39-52. doi: 10.1016/j.it.2016.10.008. Epub 2016 Nov 15.

引用本文的文献

1
Betrixaban is a broad anti-virus inhibitor by activating innate immunity.
Front Cell Infect Microbiol. 2025 Aug 21;15:1603530. doi: 10.3389/fcimb.2025.1603530. eCollection 2025.
4
VEXAS: A review of current understandings and emerging treatment strategies.
Front Immunol. 2025 Jul 28;16:1644404. doi: 10.3389/fimmu.2025.1644404. eCollection 2025.
5
Improvement of the Anticancer Efficacy of PD-1/PD-L1 Blockade: Advances in Molecular Mechanisms and Therapeutic Strategies.
MedComm (2020). 2025 Jul 15;6(8):e70274. doi: 10.1002/mco2.70274. eCollection 2025 Aug.
6
Role of Innate Immunity in Cancer.
Adv Exp Med Biol. 2025;1476:309-337. doi: 10.1007/978-3-031-85340-1_13.
7
Transcriptional profiling of and its host in an endocervical primary cell culture system using dual RNA sequencing.
Front Cell Infect Microbiol. 2025 Jun 17;15:1613922. doi: 10.3389/fcimb.2025.1613922. eCollection 2025.
9
Cell-Autonomous Immunity: From Cytosolic Sensing to Self-Defense.
Int J Mol Sci. 2025 Apr 24;26(9):4025. doi: 10.3390/ijms26094025.
10
Oxidative damage to lung mitochondrial DNA is a key contributor to the development of chemical lung injury.
Redox Biol. 2025 May;82:103624. doi: 10.1016/j.redox.2025.103624. Epub 2025 Mar 29.

本文引用的文献

1
Regulation and function of the cGAS-STING pathway of cytosolic DNA sensing.
Nat Immunol. 2016 Sep 20;17(10):1142-9. doi: 10.1038/ni.3558.
2
STING in tumor and host cells cooperatively work for NK cell-mediated tumor growth retardation.
Biochem Biophys Res Commun. 2016 Sep 30;478(4):1764-71. doi: 10.1016/j.bbrc.2016.09.021. Epub 2016 Sep 5.
3
Triggering Intracellular Receptors for Vaccine Adjuvantation.
Trends Immunol. 2016 Oct;37(10):716. doi: 10.1016/j.it.2016.08.005. Epub 2016 Aug 30.
4
RIG-I-Mediated STING Upregulation Restricts Herpes Simplex Virus 1 Infection.
J Virol. 2016 Sep 29;90(20):9406-19. doi: 10.1128/JVI.00748-16. Print 2016 Oct 15.
5
Discriminating self from non-self in nucleic acid sensing.
Nat Rev Immunol. 2016 Sep;16(9):566-80. doi: 10.1038/nri.2016.78. Epub 2016 Jul 25.
6
Activation of STING requires palmitoylation at the Golgi.
Nat Commun. 2016 Jun 21;7:11932. doi: 10.1038/ncomms11932.
7
Carcinoma-astrocyte gap junctions promote brain metastasis by cGAMP transfer.
Nature. 2016 May 26;533(7604):493-498. doi: 10.1038/nature18268. Epub 2016 May 18.
8
Cancer therapies activate RIG-I-like receptor pathway through endogenous non-coding RNAs.
Oncotarget. 2016 May 3;7(18):26496-515. doi: 10.18632/oncotarget.8420.
10
STING Promotes the Growth of Tumors Characterized by Low Antigenicity via IDO Activation.
Cancer Res. 2016 Apr 15;76(8):2076-81. doi: 10.1158/0008-5472.CAN-15-1456. Epub 2016 Mar 10.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验