Suppr超能文献

一种预测粒子成像中最可能离子路径的理论框架。

A theoretical framework to predict the most likely ion path in particle imaging.

作者信息

Collins-Fekete Charles-Antoine, Volz Lennart, Portillo Stephen K N, Beaulieu Luc, Seco Joao

机构信息

Département de physique, de génie physique et d'optique et Centre de recherche sur le cancer, Université Laval, Québec, Canada. Département de radio-oncologie et CRCHU de Québec, CHU de Québec, QC, Canada. Department of Radiation Oncology, Francis H. Burr Proton Therapy Center Massachusetts General Hospital (MGH), Boston, MA, United States of America.

出版信息

Phys Med Biol. 2017 Mar 7;62(5):1777-1790. doi: 10.1088/1361-6560/aa58ce. Epub 2017 Jan 11.

Abstract

In this work, a generic rigorous Bayesian formalism is introduced to predict the most likely path of any ion crossing a medium between two detection points. The path is predicted based on a combination of the particle scattering in the material and measurements of its initial and final position, direction and energy. The path estimate's precision is compared to the Monte Carlo simulated path. Every ion from hydrogen to carbon is simulated in two scenarios, (1) where the range is fixed and (2) where the initial velocity is fixed. In the scenario where the range is kept constant, the maximal root-mean-square error between the estimated path and the Monte Carlo path drops significantly between the proton path estimate (0.50 mm) and the helium path estimate (0.18 mm), but less so up to the carbon path estimate (0.09 mm). However, this scenario is identified as the configuration that maximizes the dose while minimizing the path resolution. In the scenario where the initial velocity is fixed, the maximal root-mean-square error between the estimated path and the Monte Carlo path drops significantly between the proton path estimate (0.29 mm) and the helium path estimate (0.09 mm) but increases for heavier ions up to carbon (0.12 mm). As a result, helium is found to be the particle with the most accurate path estimate for the lowest dose, potentially leading to tomographic images of higher spatial resolution.

摘要

在这项工作中,引入了一种通用的严格贝叶斯形式体系,以预测任何离子穿越两个检测点之间介质的最可能路径。该路径是基于粒子在材料中的散射以及对其初始和最终位置、方向和能量的测量来预测的。将路径估计的精度与蒙特卡罗模拟路径进行比较。对从氢到碳的每种离子在两种情况下进行模拟,(1)射程固定的情况和(2)初始速度固定的情况。在射程保持恒定的情况下,估计路径与蒙特卡罗路径之间的最大均方根误差在质子路径估计(0.50毫米)和氦路径估计(0.18毫米)之间显著下降,但在碳路径估计(0.09毫米)之前下降幅度较小。然而,这种情况被确定为在使路径分辨率最小化的同时使剂量最大化的配置。在初始速度固定的情况下,估计路径与蒙特卡罗路径之间的最大均方根误差在质子路径估计(0.29毫米)和氦路径估计(0.09毫米)之间显著下降,但对于较重的离子直至碳(0.12毫米)则增加。结果发现,氦是在最低剂量下路径估计最准确的粒子,这可能会产生更高空间分辨率的断层图像。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验