Suppr超能文献

明智睡眠:一种用于从智能手机事件中学习睡眠模式的贝叶斯模型。

SensibleSleep: A Bayesian Model for Learning Sleep Patterns from Smartphone Events.

作者信息

Cuttone Andrea, Bækgaard Per, Sekara Vedran, Jonsson Håkan, Larsen Jakob Eg, Lehmann Sune

机构信息

DTU Compute, Technical University of Denmark, Kgs. Lyngby, Denmark.

Sony Mobile, Nya Vattentornet, Mobilvägen, Lund, Sweden.

出版信息

PLoS One. 2017 Jan 11;12(1):e0169901. doi: 10.1371/journal.pone.0169901. eCollection 2017.

Abstract

We propose a Bayesian model for extracting sleep patterns from smartphone events. Our method is able to identify individuals' daily sleep periods and their evolution over time, and provides an estimation of the probability of sleep and wake transitions. The model is fitted to more than 400 participants from two different datasets, and we verify the results against ground truth from dedicated armband sleep trackers. We show that the model is able to produce reliable sleep estimates with an accuracy of 0.89, both at the individual and at the collective level. Moreover the Bayesian model is able to quantify uncertainty and encode prior knowledge about sleep patterns. Compared with existing smartphone-based systems, our method requires only screen on/off events, and is therefore much less intrusive in terms of privacy and more battery-efficient.

摘要

我们提出了一种用于从智能手机事件中提取睡眠模式的贝叶斯模型。我们的方法能够识别个体的每日睡眠时间及其随时间的变化,并提供睡眠和清醒转换概率的估计。该模型适用于来自两个不同数据集的400多名参与者,并且我们根据专用臂带睡眠追踪器的地面真值验证了结果。我们表明,该模型能够在个体和集体层面上以0.89的准确率产生可靠的睡眠估计。此外,贝叶斯模型能够量化不确定性并编码关于睡眠模式的先验知识。与现有的基于智能手机的系统相比,我们的方法仅需要屏幕开/关事件,因此在隐私方面的干扰性要小得多,并且电池效率更高。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c2cb/5226832/f1b85bbb241c/pone.0169901.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验