Department of Mathematics, Fu Jen Catholic University, New Taipei City, Taiwan.
Program of Artificial Intelligence & Information Security, Fu-Jen Catholic University, New Taipei City, Taiwan.
J Med Internet Res. 2023 Dec 29;25:e48834. doi: 10.2196/48834.
Traditional methods for investigating work hours rely on an employee's physical presence at the worksite. However, accurately identifying break times at the worksite and distinguishing remote work outside the worksite poses challenges in work hour estimations. Machine learning has the potential to differentiate between human-smartphone interactions at work and off work.
In this study, we aimed to develop a novel approach called "probability in work mode," which leverages human-smartphone interaction patterns and corresponding GPS location data to estimate work hours.
To capture human-smartphone interactions and GPS locations, we used the "Staff Hours" app, developed by our team, to passively and continuously record participants' screen events, including timestamps of notifications, screen on or off occurrences, and app usage patterns. Extreme gradient boosted trees were used to transform these interaction patterns into a probability, while 1-dimensional convolutional neural networks generated successive probabilities based on previous sequence probabilities. The resulting probability in work mode allowed us to discern periods of office work, off-work, breaks at the worksite, and remote work.
Our study included 121 participants, contributing to a total of 5503 person-days (person-days represent the cumulative number of days across all participants on which data were collected and analyzed). The developed machine learning model exhibited an average prediction performance, measured by the area under the receiver operating characteristic curve, of 0.915 (SD 0.064). Work hours estimated using the probability in work mode (higher than 0.5) were significantly longer (mean 11.2, SD 2.8 hours per day) than the GPS-defined counterparts (mean 10.2, SD 2.3 hours per day; P<.001). This discrepancy was attributed to the higher remote work time of 111.6 (SD 106.4) minutes compared to the break time of 54.7 (SD 74.5) minutes.
Our novel approach, the probability in work mode, harnessed human-smartphone interaction patterns and machine learning models to enhance the precision and accuracy of work hour investigation. By integrating human-smartphone interactions and GPS data, our method provides valuable insights into work patterns, including remote work and breaks, offering potential applications in optimizing work productivity and well-being.
传统的工作时间研究方法依赖于员工在工作场所的实际存在。然而,准确识别工作场所的休息时间,并区分工作场所外的远程工作,在工作时间估算方面存在挑战。机器学习有可能区分工作时和休息时的人机与智能手机交互。
本研究旨在开发一种名为“工作模式概率”的新方法,该方法利用人机与智能手机交互模式和相应的 GPS 位置数据来估算工作时间。
为了捕获人机与智能手机交互和 GPS 位置数据,我们使用了我们团队开发的“员工工时”应用程序,以被动且持续地记录参与者的屏幕事件,包括通知的时间戳、屏幕开/关事件以及应用程序使用模式。极端梯度提升树用于将这些交互模式转换为概率,而一维卷积神经网络根据前序序列概率生成连续概率。工作模式概率可用于区分办公室工作、非工作、工作场所休息和远程工作时间。
我们的研究包括 121 名参与者,共计 5503 个人日(个人日代表所有参与者收集和分析数据的累计天数)。开发的机器学习模型的平均预测性能,通过接收者操作特征曲线下的面积来衡量,为 0.915(SD 0.064)。使用工作模式概率(高于 0.5)估算的工作时间明显更长(平均每天 11.2 小时,标准差 2.8 小时),而 GPS 定义的工作时间(平均每天 10.2 小时,标准差 2.3 小时;P<.001)。这种差异归因于远程工作时间为 111.6(标准差 106.4)分钟,而休息时间为 54.7(标准差 74.5)分钟。
我们的新方法“工作模式概率”利用人机与智能手机交互模式和机器学习模型,提高了工作时间研究的精度和准确性。通过整合人机与智能手机交互和 GPS 数据,我们的方法提供了对工作模式的有价值见解,包括远程工作和休息时间,为优化工作效率和幸福感提供了潜在应用。