Suppr超能文献

用移动感应追踪主观睡眠质量和情绪:多元宇宙研究。

Tracking Subjective Sleep Quality and Mood With Mobile Sensing: Multiverse Study.

机构信息

Faculty of Psychology and Educational Sciences, Katholieke Universiteit Leuven, Leuven, Belgium.

出版信息

J Med Internet Res. 2022 Mar 18;24(3):e25643. doi: 10.2196/25643.

Abstract

BACKGROUND

Sleep influences moods and mood disorders. Existing methods for tracking the quality of people's sleep are laborious and obtrusive. If a method were available that would allow effortless and unobtrusive tracking of sleep quality, it would mark a significant step toward obtaining sleep data for research and clinical applications.

OBJECTIVE

Our goal was to evaluate the potential of mobile sensing data to obtain information about a person's sleep quality. For this purpose, we investigated to what extent various automatically gathered mobile sensing features are capable of predicting (1) subjective sleep quality (SSQ), (2) negative affect (NA), and (3) depression; these variables are associated with objective sleep quality. Through a multiverse analysis, we examined how the predictive quality varied as a function of the selected sensor, the extracted feature, various preprocessing options, and the statistical prediction model.

METHODS

We used data from a 2-week trial where we collected mobile sensing and experience sampling data from an initial sample of 60 participants. After data cleaning and removing participants with poor compliance, we retained 50 participants. Mobile sensing data involved the accelerometer, charging status, light sensor, physical activity, screen activity, and Wi-Fi status. Instructions were given to participants to keep their smartphone charged and connected to Wi-Fi at night. We constructed 1 model for every combination of multiverse parameters to evaluate their effects on each of the outcome variables. We evaluated the statistical models by applying them to training, validation, and test sets to prevent overfitting.

RESULTS

Most models (on either of the outcome variables) were not informative on the validation set (ie, predicted R≤0). However, our best models achieved R values of 0.658, 0.779, and 0.074 for SSQ, NA, and depression, respectively on the training set and R values of 0.348, 0.103, and 0.025, respectively on the test set.

CONCLUSIONS

The approach demonstrated in this paper has shown that different choices (eg, preprocessing choices, various statistical models, different features) lead to vastly different results that are bad and relatively good as well. Nevertheless, there were some promising results, particularly for SSQ, which warrant further research on this topic.

摘要

背景

睡眠会影响情绪和情绪障碍。现有的跟踪人们睡眠质量的方法既费力又麻烦。如果有一种方法可以毫不费力地进行睡眠质量的跟踪,那么这将是朝着获取研究和临床应用睡眠数据迈出的重要一步。

目的

我们的目标是评估移动感应数据获取有关个人睡眠质量信息的潜力。为此,我们研究了各种自动收集的移动感应功能在多大程度上能够预测(1)主观睡眠质量(SSQ),(2)负性情绪(NA)和(3)抑郁;这些变量与客观睡眠质量相关。通过多元分析,我们检查了预测质量如何随所选传感器、提取特征、各种预处理选项和统计预测模型的变化而变化。

方法

我们使用了为期两周的试验中的数据,从最初的 60 名参与者中收集了移动感应和体验抽样数据。在数据清理和剔除不遵守规定的参与者后,我们保留了 50 名参与者。移动感应数据包括加速度计、充电状态、光传感器、身体活动、屏幕活动和 Wi-Fi 状态。我们向参与者发出指示,要求他们在夜间保持智能手机充电并连接到 Wi-Fi。我们为每个多元宇宙参数组合构建了 1 个模型,以评估它们对每个结果变量的影响。我们通过将模型应用于训练、验证和测试集来防止过拟合,从而评估统计模型。

结果

大多数模型(针对任一个结果变量)在验证集上都没有信息(即,预测 R≤0)。但是,我们的最佳模型在训练集上分别获得了 SSQ、NA 和抑郁的 R 值为 0.658、0.779 和 0.074,在测试集上分别获得了 R 值为 0.348、0.103 和 0.025。

结论

本文中展示的方法表明,不同的选择(例如,预处理选择、各种统计模型、不同的特征)会导致结果差异很大,既有较差的也有较好的。然而,有一些有希望的结果,特别是对于 SSQ,这值得进一步研究这个话题。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f0f7/8976254/469169e9cd38/jmir_v24i3e25643_fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验