Institute of Chemical Kinetics and Combustion, Russian Academy of Sciences , Novosibirsk 630090, Russian Federation.
Physics Department, Novosibirsk State University , Novosibirsk 630090, Russian Federation.
J Phys Chem B. 2017 Feb 9;121(5):1026-1032. doi: 10.1021/acs.jpcb.6b10133. Epub 2017 Jan 25.
For the so-called dynamical transition from harmonic to anharmonic (or diffusive) motions in biological systems, the presence of hydration water is important. To explain the molecular mechanism of this transition, the information on molecular motions in the nearest hydration shell would be helpful. In this work, to study molecular motions in the nearest hydration shell of spin-labeled model biological membranes, a pulsed version of electron paramagnetic resonance, electron spin echo envelope modulation (ESEEM) spectroscopy, is used. For hydration by deuterium water, the H ESEEM frequency spectra resemble the solid-state H NMR line shape that is widely used for structural and dynamical studies. Two types of model membranes were investigated and compared: bilayers consisting of unsaturated lipid 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) and bilayers consisting of fully saturated lipid 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC). The lipid chain packing for the POPC bilayer is known to be more defective than that for the DPPC bilayer. For both the POPC and the DPPC bilayers, the H ESEEM NMR-like spectra showed a sharp narrowing between 180 and 190 K. From the other side, in both bilayers at 188 K, an inflection was observed for the temperature dependence of molecular motions detected by the spin relaxation of spin labels in the bilayer interior. It was concluded that dynamical transition in the bilayer interior is accompanied by an onset of isotropic water molecular dynamics in the nearest hydration shell of the bilayer with a rate of ∼10 s. Also, the H ESEEM NMR-like spectra in the POPC bilayer showed slight changes above 100 K that could be ascribed to another dynamical transition resulting in the appearance of restricted orientational motion of water molecules. These data also are interrelated with spin relaxation of spin labels in the POPC bilayer interior and support the hypothesis ascribing the transition at 100 K to excessive lipid chain flexibility.
对于生物系统中从谐调到非谐(或扩散)运动的所谓动力学转变,水合作用很重要。为了解释这种转变的分子机制,了解近水合壳层中分子运动的信息将很有帮助。在这项工作中,为了研究自旋标记模型生物膜近水合壳层中的分子运动,使用了电子顺磁共振的脉冲版本,电子自旋回波包络调制(ESEEM)光谱。对于氘水的水合作用,H ESEEM 频率谱类似于广泛用于结构和动力学研究的固态 H NMR 线形状。研究并比较了两种类型的模型膜:由不饱和脂质 1-棕榈酰-2-油酰-sn-甘油-3-磷酸胆碱(POPC)组成的双层膜和由完全饱和脂质 1,2-二棕榈酰-sn-甘油-3-磷酸胆碱(DPPC)组成的双层膜。已知 POPC 双层的脂质链堆积比 DPPC 双层更有缺陷。对于 POPC 和 DPPC 双层,H ESEEM NMR 样谱在 180 至 190 K 之间显示出明显的变窄。另一方面,在 188 K 时,在双层内部通过自旋标记的自旋弛豫检测到的分子运动的温度依赖性观察到一个拐点。可以得出结论,双层内部的动力学转变伴随着双层近水合壳层中各向同性水分子动力学的开始,其速率约为 10 s。此外,POPC 双层中的 H ESEEM NMR 样谱在 100 K 以上显示出轻微变化,这可能归因于另一种动力学转变,导致水分子的受限取向运动出现。这些数据还与 POPC 双层内部自旋标记的自旋弛豫有关,并支持将 100 K 处的转变归因于脂质链过度灵活性的假设。