Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, Soochow University , Suzhou 215123, People's Republic of China.
ACS Appl Mater Interfaces. 2017 Feb 1;9(4):3985-3994. doi: 10.1021/acsami.6b15105. Epub 2017 Jan 24.
PLGA-based nanomedicines have enormous potential for targeted cancer therapy. To boost their stability, targetability, and intracellular drug release, here we developed novel multifunctional PLGA anticancer nanomedicines by combining a reductively cleavable surfactant (RCS), vitamin E-SS-oligo(methyl diglycol l-glutamate), with covalent hyaluronic acid (HA) coating. Reduction-sensitive HA-coated PLGA nanoparticles (rHPNPs) were obtained with small sizes of 55-61 nm and ζ potentials of -26.7 to -28.8 mV at 18.4-40.3 wt % RSC. rHPNPs were stable against dilution and 10% FBS while destabilized under reductive condition. The release studies revealed significantly accelerated docetaxel (DTX) release in the presence of 10 mM glutathione. DTX-rHPNPs exhibited potent and specific antitumor effect to CD44 + A549 lung cancer cells (IC = 0.52 μg DTX equiv/mL). The in vivo studies demonstrated that DTX-rHPNPs had an extended circulation time and greatly enhanced tolerance in mice. Strikingly, DTX-rHPNPs completely inhibited growth of orthotopic human A549-Luc lung tumor in mice, leading to a significantly improved survival rate and reduced adverse effect as compared to free DTX. This study highlights that advanced nanomedicines can be rationally designed by combining functional surfactants and surface coating.
基于 PLGA 的纳米药物在癌症靶向治疗方面具有巨大的潜力。为了提高其稳定性、靶向性和细胞内药物释放,我们通过将还原裂解表面活性剂 (RCS)、维生素 E-SS-寡聚(甲基二甘醇 L-谷氨酸)与共价透明质酸(HA)涂层相结合,开发了新型多功能 PLGA 抗癌纳米药物。还原敏感的 HA 涂层 PLGA 纳米颗粒 (rHPNPs) 的粒径为 55-61nm,ζ 电位为-26.7 至-28.8mV,在 18.4-40.3wt%RCS 时。rHPNPs 在稀释和 10%FBS 下稳定,而在还原条件下不稳定。释放研究表明,在存在 10mM 谷胱甘肽的情况下,多西紫杉醇(DTX)的释放明显加快。DTX-rHPNPs 对 CD44+A549 肺癌细胞具有强大的特异性抗肿瘤作用(IC=0.52μgDTX 当量/mL)。体内研究表明,DTX-rHPNPs 具有延长的循环时间,并大大提高了小鼠的耐受性。值得注意的是,与游离 DTX 相比,DTX-rHPNPs 完全抑制了小鼠原位人 A549-Luc 肺癌肿瘤的生长,导致存活率显著提高,不良反应减少。本研究强调,可以通过结合功能表面活性剂和表面涂层来合理设计先进的纳米药物。
ACS Omega. 2022-12-29
RSC Adv. 2021-3-3
Nano Converg. 2019-7-15
J Nanobiotechnology. 2019-4-3
Front Pharmacol. 2018-10-31
Acta Pharm Sin B. 2018-1
Int J Nanomedicine. 2018-4-12