Institut für Angewandte und Experimentelle Physik, Universität Regensburg, Universitätsstrasse 31, 93053, Regensburg, Germany.
Kekulé-Institut für Organische Chemie und Biochemie der Universität Bonn, Gerhard-Domagk-Strasse 1, 53121, Bonn, Germany.
Angew Chem Int Ed Engl. 2017 Jan 24;56(5):1234-1238. doi: 10.1002/anie.201610723. Epub 2017 Jan 12.
π-Conjugated segments, chromophores, are the electronically active units of polymer materials used in organic electronics. To elucidate the effect of the bending of these linear moieties on elementary electronic properties, such as luminescence color and radiative rate, we introduce a series of molecular polygons. The π-system in these molecules becomes so distorted in bichromophores (digons) that these absorb and emit light of arbitrary polarization: any part of the chain absorbs and emits radiation with equal probability. Bending leads to a cancellation of transition dipole moment (TDM), increasing excited-state lifetime. Simultaneously, fluorescence shifts to the red as radiative transitions require mixing of the excited state with vibrational modes. However, strain can become so large that excited-state localization on shorter units of the chain occurs, compensating TDM cancellation. The underlying correlations between shape and photophysics can only be resolved in single molecules.
π-共轭片段,即发色团,是有机电子学中用于聚合物材料的电子活性单元。为了阐明这些线性部分的弯曲对基本电子性质(如发光颜色和辐射率)的影响,我们引入了一系列分子多形体。这些分子中的π系统在双发色团(二聚体)中变得如此扭曲,以至于它们吸收和发射任意偏振的光:链的任何部分都以相等的概率吸收和发射辐射。弯曲导致跃迁偶极矩(TDM)的抵消,从而增加激发态寿命。同时,荧光向红移移动,因为辐射跃迁需要将激发态与振动模式混合。然而,应变可能会变得如此之大,以至于激发态会在链的较短单元上发生局部化,从而补偿 TDM 的抵消。形状和光物理之间的潜在相关性只能在单个分子中得到解决。