Institut für Experimentelle und Angewandte Physik, Universität Regensburg, 93053 Regensburg, Germany.
Kekulé-Institut für Organische Chemie und Biochemie, Universität Bonn, 53121 Bonn, Germany.
Proc Natl Acad Sci U S A. 2018 Apr 17;115(16):E3626-E3634. doi: 10.1073/pnas.1722229115. Epub 2018 Apr 2.
The breaking of molecular symmetry through photoexcitation is a ubiquitous but rather elusive process, which, for example, controls the microscopic efficiency of light harvesting in molecular aggregates. A molecular excitation within a π-conjugated segment will self-localize due to strong coupling to molecular vibrations, locally changing bond alternation in a process which is fundamentally nondeterministic. Probing such symmetry breaking usually relies on polarization-resolved fluorescence, which is most powerful on the level of single molecules. Here, we explore symmetry breaking by designing a large, asymmetric acceptor-donor-acceptor (A-D-A) complex 10 nm in length, where excitation energy can flow from the donor, a π-conjugated oligomer, to either one of the two boron-dipyrromethene (bodipy) dye acceptors of different color. Fluorescence correlation spectroscopy (FCS) reveals a nondeterministic switching between the energy-transfer pathways from the oligomer to the two acceptor groups on the submillisecond timescale. We conclude that excitation energy transfer, and light harvesting in general, are fundamentally nondeterministic processes, which can be strongly perturbed by external stimuli. A simple demonstration of the relation between exciton localization within the extended π-system and energy transfer to the endcap is given by considering the selectivity of endcap emission through the polarization of the excitation light in triads with bent oligomer backbones. Bending leads to increased localization so that the molecule acquires bichromophoric characteristics in terms of its fluorescence photon statistics.
通过光激发打破分子对称性是一种普遍但相当难以捉摸的过程,例如,它控制着分子聚集体中光捕获的微观效率。由于与分子振动的强耦合,π 共轭片段内的分子激发会自局域化,局部改变键交替,这是一个基本的非确定性过程。探测这种对称性破缺通常依赖于偏振分辨荧光,这在单分子水平上最为有效。在这里,我们通过设计一个长 10nm 的大的不对称给体-受体-给体(A-D-A)复合物来探索对称性破缺,其中激发能量可以从供体,即一个π 共轭寡聚物,流向两个不同颜色的硼二吡咯甲烷(bodipy)染料受体之一。荧光相关光谱(FCS)揭示了在亚毫秒时间尺度上,从寡聚物到两个受体基团的能量转移途径之间存在着非确定性的切换。我们得出结论,能量转移和光捕获总体上是基本的非确定性过程,可以被外部刺激强烈干扰。通过考虑在具有弯曲寡聚物骨架的三联体中通过激发光的偏振来选择性地发射端盖,给出了激发子在扩展π 体系内的局域化与能量转移到端盖之间的关系的简单证明。弯曲导致局域化增加,从而使分子在其荧光光子统计方面具有双发色团的特性。