Lützkendorf Jana, Wieduwild Elisabeth, Nerger Katrin, Lambrecht Nina, Schmoll Hans-Joachim, Müller-Tidow Carsten, Müller Lutz Peter
Universitätsklinik und Poliklinik für Innere Medizin IV, Hämatologie/Onkologie, Martin-Luther-Universität Halle-Wittenberg, Halle (Saale), Germany.
PLoS One. 2017 Jan 12;12(1):e0169921. doi: 10.1371/journal.pone.0169921. eCollection 2017.
Adult stem cells including multipotent mesenchymal stromal cells (MSC) acquire a high amount of DNA-damage due to their prolonged lifespan. MSC may exert specific mechanisms of resistance to avoid loss of functional activity. We have previously shown that resistance of MSC is associated with an induction of p53 and proliferation arrest upon genotoxic damage. Hypoxia may also contribute to resistance in MSC due to the low oxygen tension in the niche. In this study we characterized the role of p53 and contribution of hypoxia in resistance of MSC to genotoxic damage. MSC exhibited increased resistance to cisplatin induced DNA-damage. This resistance was associated with a temporary G2/M cell cycle arrest, induction of p53- and p21-expression and reduced cyclin B / cdk1-levels upon subapoptotic damage. Resistance of MSC to cisplatin was increased at hypoxic conditions i. e. oxygen <0.5%. However, upon hypoxia the cisplatin-induced cell cycle arrest and expression of p53 and p21 were abrogated. MSC with shRNA-mediated p53 knock-down showed a reduced cell cycle arrest and increased cyclin B / cdk1 expression. However, this functional p53 knock down did not alter the resistance to cisplatin. In contrast to cisplatin, functional p53-knock-down increased the resistance of MSC to etoposide. We conclude that resistance of MSC to genotoxic damage is influenced by oxygen tension but is not generally dependent on p53. Thus, p53-dependent and p53-independent mechanisms of resistance are likely to contribute to the life-long functional activity of MSC in vivo. These findings indicate that hypoxia and different resistance pathways contribute to the phenotype that enables the prolonged lifespan of MSC.
包括多能间充质基质细胞(MSC)在内的成体干细胞由于其较长的寿命而积累了大量DNA损伤。MSC可能发挥特定的抗性机制以避免功能活性丧失。我们之前已经表明,MSC的抗性与基因毒性损伤后p53的诱导和增殖停滞有关。由于其微环境中的低氧张力,缺氧也可能导致MSC产生抗性。在本研究中,我们表征了p53的作用以及缺氧在MSC对基因毒性损伤的抗性中的作用。MSC对顺铂诱导的DNA损伤表现出增强的抗性。这种抗性与亚凋亡损伤后的短暂G2/M细胞周期停滞、p53和p21表达的诱导以及细胞周期蛋白B/细胞周期蛋白依赖性激酶1(cyclin B / cdk1)水平的降低有关。在缺氧条件下(即氧气<0.5%),MSC对顺铂的抗性增强。然而,在缺氧情况下,顺铂诱导的细胞周期停滞以及p53和p21的表达被消除。用短发夹RNA(shRNA)介导的p53敲低的MSC显示出细胞周期停滞减少和细胞周期蛋白B / cdk1表达增加。然而,这种功能性p53敲低并未改变对顺铂的抗性。与顺铂相反,功能性p53敲低增加了MSC对依托泊苷的抗性。我们得出结论,MSC对基因毒性损伤的抗性受氧张力影响,但一般不依赖于p53。因此,p53依赖性和p53非依赖性抗性机制可能有助于MSC在体内的终身功能活性。这些发现表明,缺氧和不同的抗性途径促成了使MSC能够延长寿命的表型。