State Key Laboratory for Pollution Control, School of Environmental Science and Engineering, Tongji University , 1239 Siping Road, Shanghai 200092, China.
Environ Sci Technol. 2017 Feb 21;51(4):2288-2294. doi: 10.1021/acs.est.6b04315. Epub 2017 Jan 31.
A nanostructure-based mechanism is presented on the enrichment, separation, and immobilization of arsenic with nanoscale zero-valent iron (nZVI). The As-Fe reactions are studied with spherical aberration corrected scanning transmission electron microscopy (Cs-STEM). Near-atomic resolution (<1 nm) electron tomography discovers a thin continuous layer (23 ± 3 Å) of elemental arsenic sandwiched between the iron oxide shell and the zerovalent iron core. This points to a unique mechanism of nanoencapsulation and proves that the outer layer, especially the Fe(0)-oxide interface, is the edge of the As-Fe reactions. Atomic-resolution imaging on the grain boundary provides strong evidence that arsenic atoms diffuse preferably along the nonequilibrium, high-energy, and defective polycrystalline grain boundary of iron oxides. Results also offer direct evidence on the surface sorption or surface complex formation of arsenate on ferric hydroxide (FeOOH). The core-shell structure and unique properties of nZVI clearly underline rapid separation, large capacity, and stability for the treatment of toxic heavy metals such as cadmium, chromium, arsenic, and uranium.
基于纳米结构的机制,纳米零价铁(nZVI)用于砷的富集、分离和固定。利用球差校正扫描透射电子显微镜(Cs-STEM)研究了 As-Fe 反应。近原子分辨率(<1nm)电子断层扫描发现,在氧化铁壳和零价铁核之间夹有一层薄的连续元素砷层(23±3Å)。这表明了一种独特的纳米封装机制,并证明了外层,特别是 Fe(0)-氧化物界面,是 As-Fe 反应的边缘。在晶界上进行原子分辨率成像为砷原子沿氧化铁的非平衡、高能和有缺陷的多晶晶界优先扩散提供了有力证据。结果还为砷酸盐在氢氧化铁(FeOOH)上的表面吸附或表面络合形成提供了直接证据。nZVI 的核壳结构和独特性质明显强调了其在处理有毒重金属(如镉、铬、砷和铀)方面的快速分离、大容量和稳定性。