Sun Hongmao, Nguyen Kimloan, Kerns Edward, Yan Zhengyin, Yu Kyeong Ri, Shah Pranav, Jadhav Ajit, Xu Xin
National Center for Advancing Translational Sciences (NCATS), National Institutes of Health, Bethesda, MD 20892, USA.
National Center for Advancing Translational Sciences (NCATS), National Institutes of Health, Bethesda, MD 20892, USA.
Bioorg Med Chem. 2017 Feb 1;25(3):1266-1276. doi: 10.1016/j.bmc.2016.12.049. Epub 2016 Dec 31.
Cell membrane permeability is an important determinant for oral absorption and bioavailability of a drug molecule. An in silico model predicting drug permeability is described, which is built based on a large permeability dataset of 7488 compound entries or 5435 structurally unique molecules measured by the same lab using parallel artificial membrane permeability assay (PAMPA). On the basis of customized molecular descriptors, the support vector regression (SVR) model trained with 4071 compounds with quantitative data is able to predict the remaining 1364 compounds with the qualitative data with an area under the curve of receiver operating characteristic (AUC-ROC) of 0.90. The support vector classification (SVC) model trained with half of the whole dataset comprised of both the quantitative and the qualitative data produced accurate predictions to the remaining data with the AUC-ROC of 0.88. The results suggest that the developed SVR model is highly predictive and provides medicinal chemists a useful in silico tool to facilitate design and synthesis of novel compounds with optimal drug-like properties, and thus accelerate the lead optimization in drug discovery.
细胞膜通透性是药物分子口服吸收和生物利用度的重要决定因素。本文描述了一种预测药物通透性的计算机模拟模型,该模型基于一个大型通透性数据集构建,该数据集包含7488个化合物条目或5435个结构独特的分子,这些数据由同一实验室使用平行人工膜通透性测定法(PAMPA)测得。基于定制的分子描述符,使用4071个具有定量数据的化合物训练的支持向量回归(SVR)模型能够预测其余1364个具有定性数据的化合物,其受试者工作特征曲线下面积(AUC-ROC)为0.90。使用由定量和定性数据组成的整个数据集的一半训练的支持向量分类(SVC)模型对其余数据进行了准确预测,AUC-ROC为0.88。结果表明,所开发的SVR模型具有高度预测性,为药物化学家提供了一种有用的计算机模拟工具,以促进具有最佳类药性质的新型化合物的设计和合成,从而加速药物发现中的先导优化。