Suppr超能文献

用于平行人工膜渗透实验(PAMPA)渗透率的高度预测性和可解释性模型。

Highly predictive and interpretable models for PAMPA permeability.

作者信息

Sun Hongmao, Nguyen Kimloan, Kerns Edward, Yan Zhengyin, Yu Kyeong Ri, Shah Pranav, Jadhav Ajit, Xu Xin

机构信息

National Center for Advancing Translational Sciences (NCATS), National Institutes of Health, Bethesda, MD 20892, USA.

National Center for Advancing Translational Sciences (NCATS), National Institutes of Health, Bethesda, MD 20892, USA.

出版信息

Bioorg Med Chem. 2017 Feb 1;25(3):1266-1276. doi: 10.1016/j.bmc.2016.12.049. Epub 2016 Dec 31.

Abstract

Cell membrane permeability is an important determinant for oral absorption and bioavailability of a drug molecule. An in silico model predicting drug permeability is described, which is built based on a large permeability dataset of 7488 compound entries or 5435 structurally unique molecules measured by the same lab using parallel artificial membrane permeability assay (PAMPA). On the basis of customized molecular descriptors, the support vector regression (SVR) model trained with 4071 compounds with quantitative data is able to predict the remaining 1364 compounds with the qualitative data with an area under the curve of receiver operating characteristic (AUC-ROC) of 0.90. The support vector classification (SVC) model trained with half of the whole dataset comprised of both the quantitative and the qualitative data produced accurate predictions to the remaining data with the AUC-ROC of 0.88. The results suggest that the developed SVR model is highly predictive and provides medicinal chemists a useful in silico tool to facilitate design and synthesis of novel compounds with optimal drug-like properties, and thus accelerate the lead optimization in drug discovery.

摘要

细胞膜通透性是药物分子口服吸收和生物利用度的重要决定因素。本文描述了一种预测药物通透性的计算机模拟模型,该模型基于一个大型通透性数据集构建,该数据集包含7488个化合物条目或5435个结构独特的分子,这些数据由同一实验室使用平行人工膜通透性测定法(PAMPA)测得。基于定制的分子描述符,使用4071个具有定量数据的化合物训练的支持向量回归(SVR)模型能够预测其余1364个具有定性数据的化合物,其受试者工作特征曲线下面积(AUC-ROC)为0.90。使用由定量和定性数据组成的整个数据集的一半训练的支持向量分类(SVC)模型对其余数据进行了准确预测,AUC-ROC为0.88。结果表明,所开发的SVR模型具有高度预测性,为药物化学家提供了一种有用的计算机模拟工具,以促进具有最佳类药性质的新型化合物的设计和合成,从而加速药物发现中的先导优化。

相似文献

3
10
A corneal-PAMPA-based in silico model for predicting corneal permeability.基于角膜-PAMPA 的计算模型,用于预测角膜透过性。
J Pharm Biomed Anal. 2021 Sep 5;203:114218. doi: 10.1016/j.jpba.2021.114218. Epub 2021 Jun 17.

引用本文的文献

本文引用的文献

4
Testing physical models of passive membrane permeation.测试被动膜渗透的物理模型。
J Chem Inf Model. 2012 Jun 25;52(6):1621-36. doi: 10.1021/ci200583t. Epub 2012 May 24.
10
Visualisation and interpretation of Support Vector Regression models.支持向量回归模型的可视化与解释
Anal Chim Acta. 2007 Jul 9;595(1-2):299-309. doi: 10.1016/j.aca.2007.03.023. Epub 2007 Mar 18.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验