Suppr超能文献

开发一种血脑屏障通透性预测模型,以探索神经毒性数据在风险评估中的相关性。

Developing a predictive model for blood-brain-barrier permeability to explore relevance of neurotoxicity data for risk assessment.

作者信息

Illa Siena E, Feng Earley Yumei, Li Li, Li Dingsheng

机构信息

School of Public Health, University of Nevada, Reno, NV, United States.

Department of Medicine, University of Rochester Medical Center, Rochester, NY, United States.

出版信息

Front Toxicol. 2025 Apr 17;7:1535112. doi: 10.3389/ftox.2025.1535112. eCollection 2025.

Abstract

INTRODUCTION

Despite recent rapid advancements in toxicology, its application to whole-body health outcomes remains limited. Incorporating factors like internal exposure, such as permeability across biomembranes, could improve its relevance. Notably, there is a lack of data and predictive models for blood-brain barrier (BBB) permeability, a proxy for the exposure of target organs to neurotoxicity. We developed a predictive model for BBB permeability to investigate whether it can strengthen the correlation between and neurotoxicity data.

METHODS

We collected permeability data from parallel artificial membrane permeability assays for brain membranes (PAMPA-BBB) for 106 compounds with varied physicochemical properties. This was utilized to develop an empirical model to expand the potential coverage of chemicals. A list of 23 chemicals with available and neurotoxicity data from EPA IRIS and ToxCast was curated to analyze the correlation in toxicity rankings with the Spearman correlation coefficient, with and without the consideration of permeability from our predictive model.

RESULTS

The PAMPA-BBB predictive model showed promising results, with an R2 of 0.71 (measured vs predicted permeabilities). Considering permeability did not improve the correlation between and neurotoxicity (0.01 vs -0.11).

DISCUSSION

This weak correlation may stem from model uncertainty and the exclusion of other toxicokinetic processes, along with interspecies toxicodynamics differences. Our results indicate more detailed information on how neurotoxic substances behave inside the body is essential to better utilize the neurotoxicity data for predicting toxicity and assessing the risk to the central nervous system.

摘要

引言

尽管毒理学最近取得了快速进展,但其在全身健康结果方面的应用仍然有限。纳入内部暴露等因素,如跨生物膜的通透性,可能会提高其相关性。值得注意的是,血脑屏障(BBB)通透性的数据和预测模型缺乏,而血脑屏障通透性是目标器官暴露于神经毒性的一个指标。我们开发了一种血脑屏障通透性预测模型,以研究它是否能加强毒理学与神经毒性数据之间的相关性。

方法

我们收集了106种具有不同理化性质的化合物在脑细胞膜平行人工膜通透性试验(PAMPA-BBB)中的通透性数据。利用这些数据开发了一个经验模型,以扩大化学品的潜在覆盖范围。整理了一份来自美国环境保护局综合风险信息系统(EPA IRIS)和ToxCast的有可用毒理学和神经毒性数据的23种化学品清单,使用斯皮尔曼相关系数分析毒性排名中的相关性,同时考虑和不考虑我们预测模型中的通透性。

结果

PAMPA-BBB预测模型显示出有前景的结果,决定系数R2为0.71(实测通透性与预测通透性)。考虑通透性并没有改善毒理学与神经毒性之间的相关性(分别为0.01和-0.11)。

讨论

这种弱相关性可能源于模型的不确定性、排除其他毒代动力学过程以及种间毒效动力学差异。我们的结果表明,关于神经毒性物质在体内行为的更详细信息对于更好地利用毒理学神经毒性数据来预测毒性和评估对中枢神经系统的风险至关重要。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/92f1/12044339/5f295836b721/ftox-07-1535112-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验