Department of Biology, Duke University, Durham, NC, USA.
Department of Plant Sciences, University of California, Davis, USA.
Genome Biol Evol. 2016 Dec 1;8(12):3672-3684. doi: 10.1093/gbe/evw272.
Ocean acidification (OA) is increasing due to anthropogenic CO2 emissions and poses a threat to marine species and communities worldwide. To better project the effects of acidification on organisms' health and persistence, an understanding is needed of the 1) mechanisms underlying developmental and physiological tolerance and 2) potential populations have for rapid evolutionary adaptation. This is especially challenging in nonmodel species where targeted assays of metabolism and stress physiology may not be available or economical for large-scale assessments of genetic constraints. We used mRNA sequencing and a quantitative genetics breeding design to study mechanisms underlying genetic variability and tolerance to decreased seawater pH (-0.4 pH units) in larvae of the sea urchin Strongylocentrotus droebachiensis. We used a gene ontology-based approach to integrate expression profiles into indirect measures of cellular and biochemical traits underlying variation in larval performance (i.e., growth rates). Molecular responses to OA were complex, involving changes to several functions such as growth rates, cell division, metabolism, and immune activities. Surprisingly, the magnitude of pH effects on molecular traits tended to be small relative to variation attributable to segregating functional genetic variation in this species. We discuss how the application of transcriptomics and quantitative genetics approaches across diverse species can enrich our understanding of the biological impacts of climate change.
海洋酸化(OA)由于人为 CO2 排放而增加,对全球海洋物种和生物群落构成威胁。为了更好地预测酸化对生物体健康和生存的影响,需要了解发育和生理耐受的机制,以及生物体快速进化适应的潜力。在非模式物种中,这尤其具有挑战性,因为针对代谢和应激生理学的靶向分析在大规模评估遗传限制时可能不可用或不经济。我们使用 mRNA 测序和定量遗传学育种设计来研究遗传变异和对海水 pH 值降低(-0.4 pH 单位)的耐受机制在海胆 Strongylocentrotus droebachiensis 幼虫中的作用。我们使用基于基因本体论的方法将表达谱整合到幼虫表现(即生长速率)变化的细胞和生化特征的间接测量中。对 OA 的分子反应很复杂,涉及到几个功能的变化,如生长速率、细胞分裂、代谢和免疫活性。令人惊讶的是,与该物种功能遗传变异引起的变异相比,OA 对分子特征的影响幅度往往较小。我们讨论了跨多种物种应用转录组学和定量遗传学方法如何丰富我们对气候变化的生物学影响的理解。