Suppr超能文献

右侧和左侧顶叶活动在控制机动车方面的差异功能。

Differential Functionality of Right and Left Parietal Activity in Controlling a Motor Vehicle.

作者信息

Brooks Justin R, Garcia Javier O, Kerick Scott E, Vettel Jean M

机构信息

Human Research and Engineering Directorate, US Army Research Laboratory Adelphi, MD, USA.

Human Research and Engineering Directorate, US Army Research LaboratoryAdelphi, MD, USA; Department of Psychological and Brain Sciences, University of CaliforniaSanta Barbara, CA, USA; Department of Bioengineering, University of PennsylvaniaPhiladelphia, PA, USA.

出版信息

Front Syst Neurosci. 2016 Dec 27;10:106. doi: 10.3389/fnsys.2016.00106. eCollection 2016.

Abstract

Driving a motor vehicle is an inherently complex task that requires robust control to avoid catastrophic accidents. Drivers must maintain their vehicle in the middle of the travel lane to avoid high speed collisions with other traffic. Interestingly, while a vehicle's lane deviation (LD) is critical, studies have demonstrated that heading error (HE) is one of the primary variables drivers use to determine a steering response, which directly controls the position of the vehicle in the lane. In this study, we examined how the brain represents the dichotomy between control/response parameters (heading, reaction time (RT), and steering wheel corrections) and task-critical parameters (LD). Specifically, we examined electroencephalography (EEG) alpha band power (8-13 Hz) from estimated sources in right and left parietal regions, and related this activity to four metrics of driving performance. Our results demonstrate differential task involvement between the two hemispheres: right parietal activity was most closely related to LD, whereas left parietal activity was most closely related to HE, RT and steering responses. Furthermore, HE, RT and steering wheel corrections increased over the duration of the experiment while LD did not. Collectively, our results suggest that the brain uses differential monitoring and control strategies in the right and left parietal regions to control a motor vehicle. Our results suggest that the regulation of this control changes over time while maintaining critical task performance. These results are interpreted in two complementary theoretical frameworks: the uncontrolled manifold and compensatory control theories. The central tenet of these frameworks permits performance variability in parameters (i.e., HE, RT and steering) so far as it does not interfere with critical task execution (i.e., LD). Our results extend the existing research by demonstrating potential neural substrates for this phenomenon which may serve as potential targets for brain-computer interfaces that predict poor driving performance.

摘要

驾驶机动车辆是一项本质上复杂的任务,需要强大的控制能力以避免灾难性事故。驾驶员必须将车辆保持在行车道中间,以避免与其他车辆高速碰撞。有趣的是,虽然车辆的车道偏离(LD)至关重要,但研究表明,航向误差(HE)是驾驶员用于确定转向响应的主要变量之一,而转向响应直接控制车辆在车道中的位置。在本研究中,我们研究了大脑如何表征控制/响应参数(航向、反应时间(RT)和方向盘校正)与任务关键参数(LD)之间的二分法。具体而言,我们检查了左右顶叶区域估计源的脑电图(EEG)阿尔法波段功率(8 - 13赫兹),并将此活动与四项驾驶性能指标相关联。我们的结果表明,两个半球在任务参与上存在差异:右侧顶叶活动与LD最密切相关,而左侧顶叶活动与HE、RT和转向响应最密切相关。此外,在实验过程中,HE、RT和方向盘校正增加,而LD没有。总体而言,我们的结果表明,大脑在左右顶叶区域使用不同的监测和控制策略来控制机动车辆。我们的结果表明,这种控制的调节会随着时间而变化,同时保持关键任务的性能。这些结果在两个互补的理论框架中进行了解释:非受控流形理论和补偿控制理论。这些框架的核心原则允许参数(即HE、RT和转向)存在性能变异性,只要它不干扰关键任务的执行(即LD)。我们的结果通过证明这一现象的潜在神经基础扩展了现有研究,这可能作为预测不良驾驶性能的脑机接口的潜在目标。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fa01/5187452/befcbb68ca05/fnsys-10-00106-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验