Suppr超能文献

脑电图-肌电图耦合作为一种用于汽车驾驶场景中转向检测的混合方法。

EEG-EMG coupling as a hybrid method for steering detection in car driving settings.

作者信息

Vecchiato Giovanni, Del Vecchio Maria, Ambeck-Madsen Jonas, Ascari Luca, Avanzini Pietro

机构信息

Institute of Neuroscience, National Research Council of Italy, Via Volturno 39/E, 43125 Parma, Italy.

Toyota Motor Europe, Brussels, Belgium.

出版信息

Cogn Neurodyn. 2022 Oct;16(5):987-1002. doi: 10.1007/s11571-021-09776-w. Epub 2022 Jan 11.

Abstract

UNLABELLED

Understanding mental processes in complex human behavior is a key issue in driving, representing a milestone for developing user-centered assistive driving devices. Here, we propose a hybrid method based on electroencephalographic (EEG) and electromyographic (EMG) signatures to distinguish left and right steering in driving scenarios. Twenty-four participants took part in the experiment consisting of recordings of 128-channel EEG and EMG activity from deltoids and forearm extensors in non-ecological and ecological steering tasks. Specifically, we identified the EEG mu rhythm modulation correlates with motor preparation of self-paced steering actions in the non-ecological task, while the concurrent EMG activity of the left (right) deltoids correlates with right (left) steering. Consequently, we exploited the mu rhythm de-synchronization resulting from the non-ecological task to detect the steering side using cross-correlation analysis with the ecological EMG signals. Results returned significant cross-correlation values showing the coupling between the non-ecological EEG feature and the muscular activity collected in ecological driving conditions. Moreover, such cross-correlation patterns discriminate the steering side earlier relative to the single EMG signal. This hybrid system overcomes the limitation of the EEG signals collected in ecological settings such as low reliability, accuracy, and adaptability, thus adding to the EMG the characteristic predictive power of the cerebral data. These results prove how it is possible to complement different physiological signals to control the level of assistance needed by the driver.

SUPPLEMENTARY INFORMATION

The online version contains supplementary material available at 10.1007/s11571-021-09776-w.

摘要

未标注

理解复杂人类行为中的心理过程是驾驶领域的一个关键问题,是开发以用户为中心的辅助驾驶设备的一个里程碑。在此,我们提出一种基于脑电图(EEG)和肌电图(EMG)特征的混合方法,以区分驾驶场景中的左右转向。24名参与者参加了实验,该实验包括在非生态和生态转向任务中记录来自三角肌和前臂伸肌的128通道EEG和EMG活动。具体而言,我们确定了在非生态任务中,EEG的μ节律调制与自定步速转向动作的运动准备相关,而左(右)三角肌的同步EMG活动与右(左)转向相关。因此,我们利用非生态任务产生的μ节律去同步化,通过与生态EMG信号的互相关分析来检测转向方向。结果返回了显著的互相关值,表明非生态EEG特征与生态驾驶条件下收集的肌肉活动之间存在耦合。此外,这种互相关模式比单个EMG信号更早地辨别出转向方向。这种混合系统克服了在生态环境中收集的EEG信号的局限性,如可靠性、准确性和适应性低,从而为EMG增添了大脑数据的特征预测能力。这些结果证明了如何通过补充不同的生理信号来控制驾驶员所需的辅助水平。

补充信息

在线版本包含可在10.1007/s11571-021-09776-w获取的补充材料。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a6e2/9508316/fcd1dae60504/11571_2021_9776_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验