Suppr超能文献

基于卷积神经网络的图决策融合技术在磁共振成像中对胰腺的分割

Pancreas Segmentation in MRI using Graph-Based Decision Fusion on Convolutional Neural Networks.

作者信息

Cai Jinzheng, Lu Le, Zhang Zizhao, Xing Fuyong, Yang Lin, Yin Qian

机构信息

Department of Biomedical Engineering, University of Florida, Gainesville, FL 32611, USA.

Department of Radiology and Imaging Sciences, National Institutes of Health Clinical Center, Bethesda, MD 20892, USA.

出版信息

Med Image Comput Comput Assist Interv. 2016 Oct;9901:442-450. doi: 10.1007/978-3-319-46723-8_51. Epub 2016 Oct 2.

Abstract

Automated pancreas segmentation in medical images is a prerequisite for many clinical applications, such as diabetes inspection, pancreatic cancer diagnosis, and surgical planing. In this paper, we formulate pancreas segmentation in magnetic resonance imaging (MRI) scans as a graph based decision fusion process combined with deep convolutional neural networks (CNN). Our approach conducts pancreatic detection and boundary segmentation with two types of CNN models respectively: 1) the tissue detection step to differentiate pancreas and non-pancreas tissue with spatial intensity context; 2) the boundary detection step to allocate the semantic boundaries of pancreas. Both detection results of the two networks are fused together as the initialization of a conditional random field (CRF) framework to obtain the final segmentation output. Our approach achieves the mean dice similarity coefficient (DSC) 76.1% with the standard deviation of 8.7% in a dataset containing 78 abdominal MRI scans. The proposed algorithm achieves the best results compared with other state of the arts.

摘要

医学图像中的胰腺自动分割是许多临床应用的前提条件,如糖尿病检查、胰腺癌诊断和手术规划。在本文中,我们将磁共振成像(MRI)扫描中的胰腺分割表述为基于图的决策融合过程,并结合深度卷积神经网络(CNN)。我们的方法分别使用两种类型的CNN模型进行胰腺检测和边界分割:1)组织检测步骤,利用空间强度上下文区分胰腺和非胰腺组织;2)边界检测步骤,确定胰腺的语义边界。两个网络的检测结果融合在一起,作为条件随机场(CRF)框架的初始化,以获得最终的分割输出。在一个包含78例腹部MRI扫描的数据集上,我们的方法实现了平均骰子相似系数(DSC)为76.1%,标准差为8.7%。与其他现有技术相比,该算法取得了最佳结果。

相似文献

1
Pancreas Segmentation in MRI using Graph-Based Decision Fusion on Convolutional Neural Networks.
Med Image Comput Comput Assist Interv. 2016 Oct;9901:442-450. doi: 10.1007/978-3-319-46723-8_51. Epub 2016 Oct 2.
2
Spatial aggregation of holistically-nested convolutional neural networks for automated pancreas localization and segmentation.
Med Image Anal. 2018 Apr;45:94-107. doi: 10.1016/j.media.2018.01.006. Epub 2018 Feb 1.
4
Morphological and multi-level geometrical descriptor analysis in CT and MRI volumes for automatic pancreas segmentation.
Comput Med Imaging Graph. 2019 Jul;75:1-13. doi: 10.1016/j.compmedimag.2019.04.004. Epub 2019 May 16.
5
Superpixel-based deep convolutional neural networks and active contour model for automatic prostate segmentation on 3D MRI scans.
Med Biol Eng Comput. 2020 Sep;58(9):1947-1964. doi: 10.1007/s11517-020-02199-5. Epub 2020 Jun 21.
6
An end-to-end approach to segmentation in medical images with CNN and posterior-CRF.
Med Image Anal. 2022 Feb;76:102311. doi: 10.1016/j.media.2021.102311. Epub 2021 Nov 27.
7
Automated pancreas segmentation from computed tomography and magnetic resonance images: A systematic review.
Comput Methods Programs Biomed. 2019 Sep;178:319-328. doi: 10.1016/j.cmpb.2019.07.002. Epub 2019 Jul 3.
9
Pancreas Segmentation in Abdominal CT Scans using Inter-/Intra-Slice Contextual Information with a Cascade Neural Network.
Annu Int Conf IEEE Eng Med Biol Soc. 2019 Jul;2019:5937-5940. doi: 10.1109/EMBC.2019.8856774.

引用本文的文献

1
Influence of early through late fusion on pancreas segmentation from imperfectly registered multimodal magnetic resonance imaging.
J Med Imaging (Bellingham). 2025 Mar;12(2):024008. doi: 10.1117/1.JMI.12.2.024008. Epub 2025 Apr 26.
2
Artificial Intelligence in Pancreatic Imaging: A Systematic Review.
United European Gastroenterol J. 2025 Feb;13(1):55-77. doi: 10.1002/ueg2.12723. Epub 2025 Jan 26.
4
Large-scale multi-center CT and MRI segmentation of pancreas with deep learning.
Med Image Anal. 2025 Jan;99:103382. doi: 10.1016/j.media.2024.103382. Epub 2024 Nov 8.
5
Artificial Intelligence in Pancreatic Image Analysis: A Review.
Sensors (Basel). 2024 Jul 22;24(14):4749. doi: 10.3390/s24144749.
7
Deep learning network with differentiable dynamic programming for retina OCT surface segmentation.
Biomed Opt Express. 2023 Jun 8;14(7):3190-3202. doi: 10.1364/BOE.492670. eCollection 2023 Jul 1.
8
Clinical impact of artificial intelligence-based solutions on imaging of the pancreas and liver.
World J Gastroenterol. 2023 Mar 7;29(9):1427-1445. doi: 10.3748/wjg.v29.i9.1427.
9
Hierarchical 3D Feature Learning for Pancreas Segmentation.
Mach Learn Med Imaging. 2021 Sep;12966:238-247. doi: 10.1007/978-3-030-87589-3_25. Epub 2021 Sep 21.

本文引用的文献

1
Fully Convolutional Networks for Semantic Segmentation.
IEEE Trans Pattern Anal Mach Intell. 2017 Apr;39(4):640-651. doi: 10.1109/TPAMI.2016.2572683. Epub 2016 May 24.
2
Geodesic patch-based segmentation.
Med Image Comput Comput Assist Interv. 2014;17(Pt 1):666-73. doi: 10.1007/978-3-319-10404-1_83.
3
Automated abdominal multi-organ segmentation with subject-specific atlas generation.
IEEE Trans Med Imaging. 2013 Sep;32(9):1723-30. doi: 10.1109/TMI.2013.2265805. Epub 2013 Jun 3.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验